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1 1.0 INTRODUCTION

I The series of programs, known generally by the name STAGS, has been under

development at the Lockheed Palo Alto Research Laboratory for roughly fifteen

years. The first version of STAGS was operational in about 1967 and wis a

finite difference based program for the nonlinear analysis of cylindrical

I shells with cutouts. This initial development was sponsored by LMSC

(Lockheed). It was followed in about 1968 by a special linear version

restricted to shells of revolution. Buckling and thermal effects were added
j Jin 1970 followed by inelastic capability, some finite elements and more

general shell geometry by 1972. These programs were funded by a number of

government agencies, but all went by the name STAGS. A new version, STAGS2

(ca. 1974), included transient response, dynamic bucklinq and could analyze

branched or segmented shells. The first version to be used by the structural

analysis community, STAGSA, was released in 1973 and included dynamic

eigenvalue analysis. The final version to be based on the finite difference

method was released in 1976 (STAGSC). Since that time, the program has

undergone a major re-writing and the latest version, STAGSC-l, was released in

1979. This version of the program is now entirely based on finite elements

and future development will be along the same lines. The development since

the earlier STAGS version (STAGS2 and on) has been under the sponsorship of

NASA, Langley. Table 1.1 summarizes this brief historical survey.

The present report deals only with the finite element version, STAGSC-l. The

evaluation study, described in the body of this report, follows the general

I methodology described by Nickell [1] and is intended to provide a potential

user of STAGSC-l with an in-depth description and critique of the program. On

the other hand, it is not intended to be a "consumer report" by rating the

program against other similar programs. In fact, this would probably be a

very difficult, if not impossible, task since STAGSC-l has many unique

features which set it apart from most other finite element programs.

1f

I
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To begin with, STAGSC-I is a special purpose program in the respect that its I
primary f inct ion is sle I I aIna lysis ( although a structure composed ent irely of

beams Car a I -,) be ai Iyzd) 'ecorid I y, it is f undameita Il1y deve loped for

nonlI inear (loometr ic and inelastic analysis. Thirdly, l)ifurcaLion buckling an(d

dynaimic analysis are very strong features in STAGSC-1. liearing this in mind,

it is to be anticipated that the majority of users will be interested mainly

in the more sophisticated and less common analysis problems and will also be

aware of the capabilities of other candidate programs in these areas. For

this reason, the evaluation study performed for, STAGSC-l has done little

comparison with other programs and has concentrated on the program features,

algorithms, structure and performance.

The specific tasks which were performed can be summarized as follows:

A. (R(view of pro(jrai docuimernt.ation (theoretical and user', ranual'%)

B. Program architecture description

C. Program functional description

D. Advanced evaluation topics;

(1) mesh convergence

(2) eigenvalue extraction

(3) transient integration

(4) large scale nonlinear collapse

The advanced evluatLion provides some direct evidence of the performance of

STAGSC-l for shell structural models which vary in complexity from the

,imp l st.-, ii qlf, l'!iieni.I model up Lo model s wi th uore IIhartl 4)00 degrees of

freedom for the study oo nonlinear collapse. The mesh converqence study was

perfornel with models uip to 630 d.o.f., while the eigenvalue and transient

integration s tuidies used up to about 1500 d.o.f. Not all capab ilitios which

are available were exercised but the objective was to examine, in depth, those

features which it is felt are of most significance for the program in

general. No specific study was made on the performance of the modified

Newton-Raphson nonlinear equation solver. The reason for this is simply that

since the solver is used in most of the problems analyzed, sufficient evidence

of its performance would be generated automatically.

(OIJ Il - ,41' :
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I The criteria for evaluating a structural analysis computer program will depend

to some extent on the nature of the program itself and hence on the community

of potential users. In the case of STAGSC-1, as has already been pointed out,

the user community will be relatively sophisticated and will expect more than

a "black box" capability. Thus, program and theory documentation must be

accorded substantial weighting. Of course, the most important considerations

are still the ability of the program to perform the types of analysis for

which it was written, accurately and as economically as possible. For a

program which performs mainly nonlinear analysis, relative economy is

particularly important, since such analyses tend to be expensive in any case.

Ease of input is always desirable but for a program which is less routinely

3 used it is not an overriding factor. More important for nonlinear analysis is

the ability to post-process the results with as much freedom as possible.

3 This report is organized into seven major sections plus an Appendix. Section

2 discusses the documentation of STAGSC-l; Sections 3 and 4 describe the

iprogram architecture and functions; Section 5 describes program verification

and Section 6 presents the advanced evaluation studies. Conclusions and

3 recommendations are presented in Section 7. The Appendix contains reference

diagrams for the program structure and also details of the element stiffness

matrix modal energy spectrum method used in the evaluation of element

convergence.

I This evaluation was performed as part of the ISEG program [1] under ONR

Contract No. N00014-79-C0825 with Westinghouse Advanced Reactors Division."I

I
I

(I
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TABLE 1.1

STAGS DEVELOPMENT I
Version General and Added
and Date Capabilities Sponsor Comments

STAGS Nonlinear Finite Difference Code LMSC Initial Version.
(ca. 1967) for Cylindrical Shells with Cut-

Outs.

STAGS Linear Version for Shells of NSRDC
(ca. 1968/9) Revolution.

STAGS Bifurcation Buckling; Thermal SAMSO
(ca. 1970) Effects.

STAGS Inelastic Analysis; Finite AFFDL First Introduction
(ca. 1970/2) Elements; Extension to More of Finite Elements.

General Shell Properties (Grid
Spacing).

STAGS2 Transient Response; Dynamic NASA Versions for CDC
(ca. 1972/4) Buckling; Branched and Segmented Langley 6600 and UNIVAC 1108

Shells.

STAGSA Dynamic Eigenvalue Analysis. NASA Used by Structural
1973 Langley Analysis Community.

STAGSC Improved Convergence with NASA Increased Inaccuracy
1976 Gridsize for Nonlinear Langley Due to Rigid Body

Analysis. Motions.

STAGSCI Completely Revised Input; NASA Program now Entirely
1979 F.E. Library Updated to Include Langley Finite Element

Springs, Beams, Shells Based.
(Triangle, Quadrilateral and
Transition).

Plotting Available for Geometry,
Deformations, Stresses, Strains,
etc.

4
09178-84B:2
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2.0 PROGRAM DOCUMENTATION

The documentation pertaining directly to STAGSC-l is at present confined to a

users manual [2] describing the input and strategy required to execute a given

problem. A theoretical manual also exists [3] which is not specific to the

STAGSC-l version. A third manual, of example cases for STAGSC, is available

S in draft form and is described as preliminary and incomplete. No programmer's

manual has so far been written.

Therefore, the situation with respect to documentation appears, at least

superficially, to be not entirely satisfactory. However, this is in part made

up for by the overall high quality of the documentation which is available. A

user, quite unfamiliar with STAGSC-l, can progress to the point of successful

execution of a problem on the basis of the user instructions (Vol. II) alone

[2]. Moreover, he can do this with some fair understanding of the basis of

the program provided that he is reasonably knowledgeable on the subject of

nonlinear finite element analysis. This is because there are sections in this

volume which deal with the important questions of modeling and solution

strategy. The theoretical manual was written when STAGS (STAGSC) was based on

finite difference theory and therefore a significant part of its content

(20-25%) is no longer applicable. It clearly needs to be extensively

rewritten to bring it up to date with the program but, nevertheless, the

greater part of it still provides valuable insight into the content and

philosophy of STAGSC-1. The draft of example problems is not useful for

STAGSC-l since the input of the problems described was written for the

previous version STAGSC and can no longer be used. This section will

describe and comment on the user's and theoretical manuals.

2.1 STAGSC-l USER INSTRUCTIONS MANUAL

A,, a,1rf,.ady noled, .he j',er input manual is larq(ely s-lf-(.o(lained and provid(d

the analyst with explicit instructions for problem execution together with

onouqh hackqround material to provide a reasonable understanding of the

theoretical basis for the proqram.

E 09178-84B:2
(S3034) 5



The manual itself has ten sections of which two minor ones are, as yet, not

issued. After a short introductory section there is a section describing the

general capabilities of STAGSC-l together with some basic concepts on the j
description of shell surfaces. The third section providcs a detailod

description of each; iutput data card and groups of cdrd,;. 1lhere are nine suhrh

groups as ollows:

o Summary and Control Parameters

o Computational Strategy Parameters

o Data Tables

o Geometry

o Discretization

o Boundary Conditions

o Loads

0 Output Control

o Element Unit

All input is free format and allows the insertion of comments which is a

valuable featire from the archival viewpoint. Each input variable is assigned

a name which is usually the same as the internal variable name used in the

program. Branching to the next input card is governed by values of variables

previously set or is unconditional. This is unambiguous (at least as far as

the present evaluation is concerned--not all paths have been investigated) and

makes for reasonably trouble free input provided that the user takes

sufficient care. At the end of each input card description there are a number

of conditional "go to's" which lead to the next card or card group. This kind

of programming logic for input preparation is somewhat unusual but in the

opinion of the reviewer has much to recommend it. At this point it is

appropriate to mention a special concept in defining shell geometry which is a

basic feature of STAGSC-l. A shell structure may often be conveniently

described in terms of one or more distinct types of surface geometry (e.g.,

cylinder, cone, torus, etc.). Each such type can be defined in STAGSC-l as a
"shell unit" with its own local coordinate system. Shell units may then be

connected to form the complete structure. Each shell unit has its own surface

coordinate grid (rows and columns) the nodes of which are employed

(selectively or otherwise) to define element connectivity. If a region of the

(9 I /b-80 : ?
(-3U3,1) 6 6
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shell has a geometry which does not lend itself to this treatment, nodes and
elements may be specified directly to form, what is referred to in STAGSC-l
terminology, as an element unit. Further details are discussed in Section 4.2.

The summary and control parameter group provide a title and define the
analysis type. The next group, computational strategy parameters, define the
following: load incrementation; eigenvalue extraction strategy (spectral

shift, eigenvalue range); time history forcing function input and integration
method; basic mesh summary for each shell unit (rows and columns); shell unit
interconnections; element unit summary (element types and number). The third

group (data tables) specifies all material properties, cross-sections of beam
elements, shell wall construction (multilayer, composite, etc.) and a table of
real and integer constants for use in user coded subroutines if required.

Shell unit surface geometry is defined in the fourth group. This may be
chosen from a library of standard forms (11 surfaces) or generated by a user
subroutine. A thirteenth option, to fit a surface to defined points by spline

functions, is indicated but not currently available. Shell wall type is also
specified in this group together with the type of strain-displacement

relationships (linear or nonlinear), elastic or elastic-plastic material
behavior and initial imperfections (if of trigonometric form).

The next major input group controls the finite element discretization. The
analyst may use the mesh defined in the shell geometry or specify an overlying
mesh of elements which picks shell mesh nodes selectively for element
connectivity. Patches of elements can be defined which allow changes in
element type; also segments of the mesh can be defined with different
spacing. In addition, the user may define the element connectivity through a

user subroutine. Also specified in this group are the location of discrete
stiffeners which may be eccentric with respect to the shell surface and can be

skewed with respect to the shell surface mesh.

Boundary conditions for shell units are specified in the sixth group. These
can he of a standard type (simple support, clamped, etc.) along a specified
edge of the shell or they may be selected degree of freedom types along the

edge which can be designated fixed or free. An additional distinction may be

0917B-84B:2
(S3034) 7 7
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1

drawn between boundary conditions applicable to incremental displacements or

basic displacements (pre-buckling, prestress). The seventh group controls the

applied loads, displacements and initial conditions (for dynamic analysis). A

concept is introduced here which is unusual in structural analysis programs,

i.e., the specification of loads, displacements or initial conditions in two

categories, A and B, which are independent. They are scaled by two

independent load factors PA and PB" The purpose of this is specifically
the determination of bifurcation buckling behavior for systems where there is
a fixed load, or prestress, defined by System B and an increasing load defined

by System A. At bifurcation the total stress is obtained from the sum of
System B stresses and System A multiplied by the eigenvalue. For non-buckling

analysis it is not necessary to specify both A and B systems. For a new user,

reading the documentation unaided, this concept can be rather puzzling at

first and the documentation should provide a little more discussion than it

does. However, in all other respects the description of loads input is quite
satisfactory.

Output control is input on the eighth group of data cards. Basically, the user

can control the frequency of printing displacements, stress resultants,
strains, stresses and point forces. The frequencies for each of the above

quantities are independently specified. These controls govern printout for

all elements in a given unit and must be specified separately for each unit.

In addition, certain selected stress or displacement components may be printed

at every step. Apart from this control, the manual recommends the use of the

post-processor STAPL. This, however, is geared mainly to the generation of

contour plots and does not currently fulfill many post-processing needs, e.g.,

time history of stresses or displacements or spatial distubution of stresses

or displacements. A significant aid in this respect would be detailed AA

descriptions of the model and solution data files (MOD and SOD) so that the

data may be processed according to the user's needs in a separate program.

Such descriptions are not given in the documentation. All of the preceeding

input pertaining to the shell unit must be repeated for each shell unit in the

structure. Each shell unit, being independently defined, may be totally

different with regard to each section of the input data which is part of the

shell unit (qeometry, elements, wall, material, etc.)

0917B-84B:2 8
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3 Th, tindl input group is for definition of an element unit. [his group

specities user point coordinates, element connectivity, point forces dt nodes

l and distributed forces on elements. This part of the input is rather

ur.oph ist itated s ince input. hy cards requires spec it i:ation of eath and (very

nude point and its coordinates and cdch element ard its nodes . Iht, oily

alternative to this is to define node geometry and element connectivity by

means of user subroutines.

The fourth section of the manual describes the function and format of each of

the thirteen available user subroutines. The descriptions are reasonably

coirplete and each one provides a coded example.

Svttion five describes the input for the post-processor SIAPL. lhe input

ritjirei is in free format, as in STAGS, and is straightforward. CurrenLly

inoperational features are marked by an asterisk.

Section 6, dealing with modeling and strategy, is one of the most important

sections in the manual. It provides the user with valuable background

information with regard to the type of analysis which should be performed to

solve a particular problem. It is in this section that one may discern the

basic philosophy of the STAGS series of programs. Put concisely, the

fundamental viewpoint is that the purpose of shell analysis is determination

of the structural failure modes. For thin shells, this usually means either

static or dynamic collapse of the shell wall rather than a straightforward

exceeding of material stress or strain limits. Thus, SlAGSC-l is the result

ot an oN t ion of a basic ronlinear shell andlysis cal)Jhility with strong

umphasis on bifurcation buckling. The dynamic counterpart has also been

developed and plastic material behavior included.

An indication of the degree of development of the nonlinear capability is

provided by the statement (in Section 6) ". . . it is suggested that nonlinear

static analysis be used as a matter of course. . ." on the grounds that if

nonlinear effects are insignificant, the nonlinear solution will converge in

one, or two iterations and the extra cost will be negligible. General reasons

ate discussed for the non-convergence of a problem. A few paragraphs are also

devoted to the problems of bifurcation buckling analysis.

(M034) 9
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The next subsection discusses mudel ing with SIAGSC-1 us in9 the shel I unit

concept for geometry description arid also the use of the capability to

incorporatu either discrete or "smeared" stiffeners. Discretization is

discussed next and is basically a description of the element library available

in SIAGSC-I. This is of vital importance since it is the only [laco, in the

documentation where the elements are described. It is adequdte for general

infurmation but does not provide the depth of detail which should be contained

III I pr)ptn I tI(h t (I i( ,l de ,(r ip Ljn.

The final subsection deals with computational strategy. First, eigenvalue

analysis for both bifurcation buckling and vibration frequencies is

discussed. The subtleties of bifurcation buckling are highlighted (existence

of negative as well as positive eigenvalues) and also the choice of spectral

shift values. The general strategy of nonlinear analysis is covered next.

The user specified parameters NCUT (total number of times the load increment

may bu halved) and NEWT (total number of times the factored matrix may be

computed) are also dealt with in some detail since they are quite subtle in

their effect on the modified Newton-Raphson procedure. Also, the internal

logic of the solution algorithm is quite complex in the way it makes decisions

with regard to refactoring or cutting the load step. As a result, even given

a careful reading of this section, the user may feel that he can exert more

control over the solution procedure than is actually the case. The parameters

DELX (tolerance criterion for displacement increments) and WUND (relaxation

factor) are also user specified and their use discussed.

Finally, the use of the transient integration operators is covered. Most of

the discussion deals with the central difference (explicit) operator and the

question of its conditional stability and how to estimate the critical time

step. The discussion of the implicit operators is less thorough and more

guidance on the appropriate choice for a given problem would be useful.

Surprisingly, there is hardly any reference to plasticity calculations in this

section. Uiven that plasticity is certain to enter into most nonlinear

calculations the omission is serious. It is, however, true that there is not

much opportunity for the user to exert control over the plasticity

0917b-84B:2 10
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I

computations (other than via the specification of the uniaxial stress-strain

curve) and that the program handles them automatically. Some discussion on

limitations should be provided.

Section 7 of the manual attempts to provide user guidance on the

interpretation of output from STAGSC-l. Special problems which may arise

durinq linear, eigenvalue, nonlinear and transient analyses are presented and

appropriate actions suggested. While such a list can never be complete, the

situations presented are basic and provide general guidance on how the user

I should handle difficulties in execution.

Section 8 (Index to Volumes 1 and 2) and 9 (Execution Control) are in

preparation. An index to the users' manual (Vol. 2) is definitely a

necessity. A disadvantage of the way the input is structured is that it is

not easy to locate the place in the manual where a specific item is

discussed. For example, in order to determine what actions are required to

create a restart file it is necessary to trace through some of the input

groups in detail. A well constructed index would help the user of only

moderate experience very considerably. The proposed section on execution

control is perhaps of lesser importance since this must be different for each

system on which STAGSC-l is installed.

Finally, Section 10 (Minimanual) provides a useful summary of all the input

records and the associated variable names. This can be also used as a

stop-gap until a proper index is available.

2.2 THEORETICAL MANUAL

As indicated previously, the currently available theoretical manual was not

written in the context of the STAGSC-l program. The latest version of the

program to which it truly applies is STAGSC, which is a finite difference

program whereas STAGSC-l is wholly finite element. Thus, there are parts of

this volume which are still valid and others which are irrelevant and it is

part of the purpose of this subsection to identify the portions which remain

- valid. The manual is organized into ten sections plus an appendix as follows:

' O917B-84B:? 11
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o Introduction

o Summary of Theory

o Constitutive Relations (Elastic)

o The Theory of Plasticity

o Geometric Nonlinearities

o Discretization Procedures

o Beams and Stiffeners

o Constraints and Transformations

o Solution Procedures

o Program Organization

Appendix

The current version of the manual is incomplete; Sections 7, 8, 10 and two

subsections of the Appendix are not yet available.

The introductory section starts off with some general observations on

computer-based structural analysis and goes on to list the basic

approximations inherent in the STAGS program. It must again be emphasized

that many comments, observations and whole sections of this volume are not

appropriate to the STAGSC-l version. This is already apparent in the

limitations described for first order shell theory. Since STAGSC-l is finite

element based and there are no curved shell elements available in the program,

shell theory cannot be a part of the element formulation.*

Section 2 provides a summary of the basic theoretical principles embodied in

STAGS. First, there is a short discussion on variational principles in terms

of Hamilton's principle for dynamics which is shown to degenerate to the

principle of minimum potential energy for static systems. A point of interest

is that the conditions under which "live" pressure loads are conservative are

delineated. Thus, it is possible to include these in an analysis based in the

variational approach which is necessarily confined to conservative systems.

The basic theory of elasticity constitutive equations are presented and the

*The elements are all flat plate triangles or quadrilateral in which there is

no coupling of membrane and hendinq behavior within the element.
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3 point mad.h that the STAGS formulation is based on enq inoerinq strain.

Kinematic strdin displacement relationships are developed for small strains

3 but with moderate rotations (<0.3 radians). These are Green's strain in

Lagrangian coordinates.

The third section presents a development of generalized elastic constitutive

5 relationships for combinations of shell wall and stiffeners.

Section 4 provides a reasonably up-to-date discussion of plasticity. First,

I the classical development of plasticity theory is considered, incremental and

deformation theories are discussed with deformation theory being discarded for

I qeneral non-monotonic loading. Reverse plasticity and the Bauschinger effect

are also treated. On the basis of improved correlations with experiment

(compared with isotropic or kinematic hardening), the White-Besseling

(mechanical sublayer) theory is selected as being representative of more

modern theories of plastic work hardening behavior. It is, however, pointed

out that for complex loading (non-monotonic and non-proportional), little is

known about the applicability of currently available theories. The solution

of plasticity problems using the pseudo-force and the tangential stiffness

methods is discussed. It is also indicated that STAGS uses a combined

approach by normally using the pseudo-force technique and updating the

stiffness matrix for plasticity effects whenever convergence behavior

indicates reformulation of the stiffness is required. This, however, is quite

1 misleading since the STAGSC-l program does not include plasticity corrections

when formulating the stiffness. An additional feature of the plasticity

computations is the so-called subincrement approach. This is discussed later

in this report in Section 4.5 of the functional description.

p, Section 5 is entitled "Geometric Nonlinearities" but concentrates entirely on
the question of structural stability. Nevertheless, the discussion is very

thorough and reveals where the greatest depth of expertise, applied to the

development of STAGS, lies. The concept of structural stability is developed

1 in terms of primary and secondary loading paths and the bifurcation point.

Various criteria for instability are discussed followed by the consequences of

instability and pre- and post-buckling behavior.

I 0917B-84B:2 13
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The rest of the section discusses static stability analysis with a largi

amount of qualitative detail. A short historical survey of analysis methods

is followed by a dissertation on flat plate hucklinq includinq post-hucklinq

behavior. This is followed by analysis of shells of revolution and general

shell buckling. For the user who is mainly preoccupied with shell stability

problems this section provides an excellent background.

The next section (Section 6) is a major discussion on discretization

procedures. Unfortunately, much of it is no longer of direct consequence to

STAGSC-] since it discusses finite difference procedures in some depth.

Also, the discussion on finite elements is somewhat out-of-date with respect

to the specific elements available in STAGSC-l. Nevertheless, the material

presented is of high quality and the contents of the section will be reviewed

here, at least in part.

The first three subsections give an overview of standard methods for numerical

differentiation and integration. This is followed by a discussion in some

depth of numerical solution procedures with considerable emphasis on finite

difference methods. Finite element procedures in general are discussed mainly

from the standpoint of continuity requirements for convergence. Topics

covered are Co , C1 continuity requirements, conforming and non-conforming

elements, order of convergence and the patch test. The presentation is

qeneral and not specific to the STAGSC-l program. With regard to the finite

difference versus the finite element approach, the point of view of the

developers is, to quote verbatim;

"There is no clear distinction between the finite element method and the

finite difference energy method. It seems reasonable to define as a

finite element method a discretization scheme in which the displacement

pattern inside the element is determined without the use of nodal

freedoms outside the closed domain of the element."

In the opinion of the reviewer, this perspective sheds some light on the

reasons for the choice of program architecture in STAGSC-l. This will be

described in some detail in Spction 3 but it can be said at this point that it

n917B-84R:?
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I is quite different from conventional finite element programs. Under the

heading of "Special Problems", the following topics are discussed briefly;

effects of reduced integration in producing spurious mechanisms; strains

produced by rigid body motion (super-parametric elements); the undesirability

of convergence from "below" for buckling analysis.

Finite difference schemes and some finite elements are discussed next. A

so-called "curved" finite element (STAGC) with incompatible ("bubble") modes

is discussed but does not appear to have been included in any available

version of the program. A flat plate quadrilateral element (STAGF) is

introduced next and the compatibility problems associated with modeling curved

shell surfaces with flat elements is discussed in some detail. It is

concluded that for displacement continuity, cubic variation of in-plane

displacement components normal to an edge is required in order to match the

cubic variation of transverse (bending) displacements. In addition, degrees

of freedom corresponding to average in-plane shear strain and rotation about

the surface normal are required at corner nodes. Thus, the complete element

is specified with seven freedoms at corner nodes and four at midside nodes (32

total). No derivation is provided.

The merits of Ahmad type elements for thin shell analysis are discussed and

finally the Clough-Felippa triangular and quadrilateral elements. The section

concludes by listing elements to be included in STAGS as follows:

o Flat quadrilateral STAGF

o Ahmad type elements

o Clough-Felippa triangle and quadrilateral

As will be detailed in Section 4, these are not the elements that are in the

STAGSC-l program, but it is clear that they are derivative versions of the

Clough-Felippa series. Ahmad elements are not yet available.

j Section 7 (Reams and Stiffeners) and 8 (Constraints and Transformations) are

described as being in preparation.

,I
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Section 9, entitled "Solution Procedures", is again one of the major part,, of I

the theoretical manual. Topics discussed are as follows: I
o Expressions for strain, kinetic and total potential energies

o Linear equation systems

o Nonlinear equation systems

o Eigenvalue analysis

o Transient analysis

This section is probably the most mathematically detailed part of-the

theoretical manual; it begins with statements of strain, kinetic arid potential

('rn'mqules dilI 1itroduct-' the (oncpt of a stiffness oper,,tor L(x) whi(h i ,

det int(d is tie first variation ot the total potential energy. L(x) is d ill d

as generally nonlinear, thus, there is a departure from the mure tamiiliar

ideas of linear and nonlinear stiffness matrices in the subsequent

devlopments. lhe. solution of linear systems of equations is presented in

terms of conventional triangular decomposition followed by forward arid

backward substitution. There is also an important discussion of problems

encountered in the solution process due to ill-conditioning. This gives

valuable insight into the meaning of the various diagnostic messages which may

be output during STAGS execution.

lhe solution of nonlinear equation systems is also discussed in depth,

beginning with a discussion of the relative merits of regular arid modified
Newton-Raphson; successive substitution with nonlinearities on the right hand

side only; tangent stiffness incremental method with residual load correction;

dynamic relaxation and, finally, energy search methods. It is concluded that

the Newton-Raphson methods include the tangent stiffness methods as special

cases and that dynamic relaxation is not competitive. The discussion then

goes on to develop equations for regular and modified Newton-kaphson in terms

of the operator L(x) (there are, unfortunately, two errors in the equations

which require correction). It is stated that the user can involve either

regular or modified Newton-Raphson but this does not appear to be operational

in the version evaluated (see Section 4.5). It is also stated that the user

0911B-84B:2 16
(S3034) 16



can choose to include material nonlinearities in reformulation of the

stiffness but, again, this is not available in STAGSC-l. Plastic

nonlinearities are included as pseudo-force contributions to the loads vector.

Eigenvalue analysis is introduced in very general terms through use of the

nonlinear stiffness operator L(x). While concise, this treatment tends to be

somewhat obscure to the less mathematically inclined structural analyst.

Having stated the linear eigenvalue problem, the generation of the associated

matrices is developed in terms of second derivatives ("second variation") of

the potential energy. This step is revealing with respect to the programming

of STAGS since it appears that this is the basis of the algorithms

implemented. The solution of the eigenvalue problem is described in terms of

the inverse power method including a spectral shift. However, the actual

method employed in STAGS is not described in detail. This is unfortunate,

since the detailed treatment, which was to be included in the Appendix to the

theory manual, has not been written. As is described in Section 4.7, the

actual method used is a variation on the subspace iteration method, which is a

relatively recent development.

The final topic is transient integration, which is one of the strong features

of STAGSC-l. The treatment is good and is substantially more clear than some

of the preceding sections. Again, the subject is introduced in general terms

with a discussion of the solution of initial and boundary value problems.

Explicit and implicit integration methods are defined. The explicit (central

difference) algorithm is presented and its conditional stability discussed.

There is also a lengthy discussion of implicit methods and their stability.

Data are presented for the stability boundaries (applicable to a linear

analysis) for a number of schemes, viz. Park, Wilson-e, Houbolt, Gear's 2nd

and 3rd order and the trapezoidal method. With regard to their stability for

nonlinear analyses it is pointed out that the criteria are not exactly valid

and that no method exists which is unconditionally stable.* It may be

difficult, therefore, to distinguish between physical and numerical

instability in the nonlinear case. It is concluded that energy balance checks

are advisable; however, STAGSC-l is not, as yet, provided with this capability.

*See further discussion in Section 4.8.
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The Appendix section is incomplete, since it contains only a section on shell

th,'ory, which is not required for SIAGSC- I . There Shoiuld almO Ib( m.re

detai led information oni the handling of plasticity, el Iiierm t formulat ion%,, l1

eigensolver and transient integration operators.

2.3 CONCLUSIONS

It may be concluded from the foregoing that there are some serious

deficiencies in the documentation for STAGSC-l. lhese are:

o lack of any program description

o partial obsolescence of the theoretical manual

o lack of a problem demonstration manual

On the positive side, it may be fairly stated that the quality of the existing

manuals is high and that they are written with the sophisticated user in

mind. Since STAUSC-l is basically a nonlinear program, this is the right

approach. However, the availability of a complete set of manuals cannot be

predicted at the time of writing and it is to be hoped that some greater

priority will be given by the developers to this highly important aspect of

the program.
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1 3.0 PROGRAM ARCHITECIURE

I STUGSC-l is the latest version of the STAGS series of programs developed over

the last 13 years ur so. It is, however, a major departure from previous

I versions since it is now entirely finite element, rather than finite

ditterernce based. The program itself has been completely rewritten and

probably bears little resemblance to the earlier versions (although a

comparison of the current and earlier source listings has not been made to

verify this). However, inspection of the job control deck required for

execution shows that there are major differences in organization of the

program. The most obvious feature is that STAGSC-l consists of two programs,

j referred to as STAGS1 and STAGS2. STAGSI is a pre-processor which reads the

input data, generates the finite element model, derives the nodal forces and

0 create ,; a file to preserve the data base for execution. STAGS2 then takes

I over and performs the execution. A new feature is a ,,eparate post-processor,

SIAPL, which provides geometry plots of the model and contour plots of the

solution variables. STAPL is not currently fully operational and has been

excluded from the evaluation. This section, therefore, will describe in some

depth the major features of the architecture of STAGSC-l.

The performance of this part of the evaluation has been hampered by the

complete lack of documentation on the programming aspects of STAGSC-l. In

addition, the lack of a revised theoretical manual has also made it difficult

for the most part to establish the algorithms embedded in the program. This

is especially true with respect to the creation of the stiffness and the

solution of equations since the procedures involved are unusual.

3.1 GENERAL DESCRIPTION

As already mentioned, the STAGSC-l program is a system of three separate

programs, STAGSI, STAGS2 and STAPL. STAGS1 and STAGS2 are normally executed

in tandem with STAPL following or run in a stand-alone mode. The version of

',IAWi:-1 which was evalijate , was configured for the CI)L-/O. Both STAGl and

SIAGS2 are highly modularized with primary and secondary overlays. STAGS] has

I eight primary and three secondary overlays while STAGS2 has eight primary and

four secondary.
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I
The organization of the program for the CDC-7600 using the SCOPE 2 system

(Version 2.1.5) utilizes the library file concept. Three files are created;

one for routines used in STAGS1, one for STAGS2 and the third for routines

used in both STAGSl and STAGS2.

The source coding is FORTRAN with a few routines written in assembly language

(COMPASS). However, equivalent FORTRAN coding is supplied in the form of

comment statements. The degree of commenting in the program is somewhat

variable. The majority of routines have at least some description of their

function; a number of others are rather fully commented while a few have no

comments at all. Overall, the commenting is adequate, but is not sufficient

to obviate the need for proper programming documentation.

3.2 STAGS1 - PRE-PROCESSOR

The overlay structure of STAGS1 is shown schematically in Figures 3.1 and
3.2. The (0,0) overlay is a short main program which serves to load primary

and secondary overlays as required by the input data. As indicated by Figure

3.1, the main program calls overlays (1,0), (2,0) and (7,0) directly and also

the other primary overlays through the subroutine PREVU. The direct calls are

for the purpose of determining core storage requirements. In addition, the

main program saves the model data generated on the file MOT.

Of the eight primary overlays, three are always loaded (6,0), (7,0) and (8,0);

these summarize the modvl input data, prepare the element stiffness data and

save the data base. The remaining five primary overlays are loaded

selectively depending on whether the model consists of shell units, an element

unit or both.

Similarly, the secondary overlays are loaded selectively depending on the

class of elements called for at input time (beam, quadrilateral or triangle).

A detailed set of diagrams showing the calls made to all subroutines are

provided in Section 9 (Appendix). The main program (Figure 9.1) also loads

the user subroutines (LUSERI) which may be required for definition of the

structural model (Figure 9.2). Major subroutine functions are:
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I
o PHASEl-controls all pre-processing

o LOVO-loads overlays from level 0

o ADATA-sets up data statements

o BDATA-sets up node number and logical freedom listsI
3.2.1 OVERLAY FUNCTIONAL DESCRIPTIONS

I The primary and secondary overlays will each be described briefly in this

Ilsection.

A. Overlay (1,0) - Program OVSU - Shell Unit Generation. Figure 9.4

shows the schematic representation of the routine calls made in this
overlay. The function of this overlay is to generate the underlying

mesh for the shell units and the stream of associated elements.

Control over the generation is via subroutine GENSU which calls the

major routines GINPT, MSHGEN, SUN and SUE. GINPT selects the type of

shell unit specified (cylinder, torus, etc. or defined by user

subroutine LAME) and defines its global orientation, wall

construction and reference surface imperfections (WIMP). MSHGEN

generates the underlying mesh when the spacing of the gridlines is

non-uniform. The actual nodal coordinates are computed, saved in a

node "table" and also printed out by the subroutine SUN; SUN also

checks for consistency in the mesh specified by the user. Element

connectivity is generated, stored and checked for consistency by

SUE. Schematics of calls made by SUN and SUE are given in Figures 9.5

and 9.6. The following routines establish the element data in the

shell unit configuration tables:

ATRIA - alternating triangularization for quadrilateral elements

BEAM - beam elements

QUAD - quadrilateral elements

QUIN - transition elements

3 STIFIN - discrete stiffeners

TRI - triangular elements
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B. Overlay (2,0) - Program OVEU - Element Unit Generation.

The logic for element unit generation is similar to that for the

shell unit but simpler because there are no built in geometries

(Figure 9.7). Thus, subroutine EUN reads in node point numbers arid

coordinates directly or through the user subroutine USRPI.

Subroutine EUE generates element connectivity data according to

element type.

C. Overlay (6,0) - Program OVIS - Model Input Summary

This overlay creates files which contain all the additional data

required for the execution of the analysis. Input data, which is

entered in free-format is interpreted by subroutine CARDS ana

translated into an internal format. The master subroutine, PREMIS,

assembles the input data defining the analysis type, loading arid

solution strategies, structural model definition and provides

descriptive output. In addition, PREMIS creates a beam cross-section

properties file, material properties file and shell-wall construction

file. Data defining the method of time integration (if used) is also

loaded and saved (LOADT). The following subroutines perform major

functions as follows:

CARDS - interprets free-form input

ESPID - generates White-Besseling plasticity data

RCONST - reads constraint conditions

TAB - tabulates beam section properties
TAM - tabulates user materials

TAP - tabulates user parameters

TAW - tabulates shell wall properties

Figure 9.8 shows the subroutine calls for this overlay.
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1). Overlay (7,0) - Proqram OVV(J - Element Stiffness Preprocessor

The descriptive comments for this overlay use the terminology "unit

prevariational overlay" and "prepare variational data for unit". In

the context of STAGSC-l this means that the functions performed are

preparatory to formulation of the stiffness matrix during execution

j with STAGS2. Figure 9.9 indicates that the overlay loads the

secondary overlays (7,1), (7,2) and (7,3). The computational flow is

controlled mainly by subroutine PREVU. PREVU processes all elements

for one shell unit at a time. It calls the element subroutines GSBM,

QUAF and TRINC as required. These subroutines perform all necessary

geometric calculations, strain-displacement relationships,

integration point coordinates, weiqhting factors and contributions to

the mass matrix.

LOV7 - loads overlays from level 7

OVE22 - beam element overlay

GSBM - master routine for beam element generation

MASSE - assembles and transforms beam element mass matrix

MACUP - controls formulation and update of element constitutive matrix

OVE41 - plate element overlay

QUAF - master routine for quadrilateral plate generation

MAPXY - performs bilinear mapping

FDF - finds integration weights and function formulas for bilinear
quadrilateral

MSH - finds coordinates and integration points

OVE31 - triangular element overlay

TRINC - master routine for triangular element generation

Figures 9.9 through 9.14 contain full details of the subroutine

linkages in this overlay and the secondary overlays.

I
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E. Overlay (10,0) - Program OVSV - Data Base Preservation

This overlay is a data management program to organize the

preprocessed information in mass storage in readiness for execution

by STAGS2. The subroutine linkages are shown in Figure 9.15.

F. Overlay (12,0) - Program OVSI - Shell Unit Intersection

Overlay (12,0), (Figure 9.16) has the sole purpose of checking the

interconnections between shell units for consistency and, where

inconsistencies are detected, removing them if possible.

G. Overlay (13,0) - Program OVSL - Shell Unit Loads

Figure 9.17 shows the subroutine calls for this overlay. Program

OVSL has a single call to subroutine LOADS which generates a loads

file for a given shell unit. LOADS generates consistent nodal forces

from applied loads and computes additions to the load vector

corresponding to imposed displacements. Output of the load file and

mass file is controlled by subroutines LOADOP and MASSOP.

H. Overlay (25,0) - Program OVEL - Element Unit Loads

Program OVEL (Figure 9.18) performs functions similar to OVSL for the

element unit. The controlling routine is LOADE with the force vector

being determined by FORCEE. FORCEE does not currently have as much

capability as FORCES in OVSL since it does not process distributed

loads.

This completes the description of the major functions in program STAGS1.
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I

E 3.3 STAGS? - Fxecution Phase

i The structure of STAGS2 follows the same standard overlaying concept as

STAGS1. There are eight primary overlays and four secondary. Figure 3.3

5 shows the overlay links. The secondary overlays are listed with their

functions in Figure 3.4.

i STAGS2 functions partly through subroutine CONTRL (Figure 9.19) and partly

through direct calls to the overlays. The direct calls are for the purpose of

determining storage requirements while CONTRL directs all analysis functions.

Also, STAGS2 loads user subroutines required during execution (LUSER2).I
Details of the subroutine calls for STAGS2 are contained in the Appendix

I (Figures 9.19 through 9.39).

A. Overlay (1,0) - Program OVlO - Data Transfer from Pre-processor

This program performs the many complex operations required to start

execution, either for a new problem or a restarted problem. Its main

functions are performed by three subroutines; ALLOC2, DATAIN, SETPAR,

I and RSTRT. ALLOC2 is itself a complex routine which determines block

sizes, assigns files, sets pointers for various operations (e.g.,

stiffness matrix computation), determines working space in core and

initializes file manager parameters. Subroutine DATAIN initializes

parameters. SETPAR also performs parameter initialization, e.g.,

I initial conditions for a transient analysis. RSTRT controls a

restart analysis. Subroutine links are shown in Figures 9.22 and

9.23.

B. Overlay (2,0) - Program OV20 - Stiffness Matrix Decomposition

Program OV20 performs one of the crucial stages in the STAGSC-l

analysis, i.e., factorization of the stiffness. It first assembles

the total stiffness matrix from the element stiffness file in

i subroutine ASEM. ASEM calls ASEM2 which adds the element

contributions. However, the actual operations are carried out by
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calling a COMPASS coded subroutine ASEMA (Figure 9.24) which renders

the details sumewhat inaccessible to a reviewer'. ]he decomposition

into upper aid lower triangles is contro I led by srihruut e FA(, [U<

with the actual reduction occurring in subroutine FALMI.

C. Overlay (3,0) - Program OV30 - Eigenvalue Solution

The eigenvalue solver is probably the most complex program in

STAGS,. Figure 9.25 provides details of the subroutine links. The

major tun L i(jisi, dri w, diven by subroutine IMII whi~i t.

computational flow for simultaneous iteration for a cluster, of

eigenvalues. SINIT determines the number of eigenvectors required as

a subspace for the simultaneous inverse iteration, performs the

inverse interation and solves for the reduced set of eigenvectors

using the Householder tridiagonalization and QL method. The major

subroutines in which these computations are performed are EIGEN

(Figure 9.26) and SOLVE. EIGEN calls subroutines TRED2 and TQL2

which are FORTRAN versions of ALGOL procedures originally developed

by Wilkinson, Martin and Reinsch.

D. Overlay (4,0) Program UV40 - Formulation of Stiffness

The comments provided in the subroutines called by this overlay refer

to "second variation of strain energy". This terminology refers to

all the functions normally associated with the generation of

stiffness matrices and this is indeed the function of the overlay.

Figures 9.27, 9.28 and 9.29 show the subroutine links for the

overlay. The major routines called are VAR2, CVR2, VR2 and VRDATA.

VAR2 and CVR2 are the controlling routines which call VRDATA and

VR2. VRDATA provides all the necessary information specific to the

element type while VR? performs the actual calculations of the

stiffness contributions at a given integration point. Nonlinedr

terms are handled by VR2 and also effects due to live pressure

loads. Brief functional descriptions of significant routines are as

follows:
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SDBM - Forms strain-displacement matrix for a beam

FDRV - finds interpolating polynomials, 1st and 2nd partial
derivatives for quadrilateral elements

i(UADF - performs integrations for quadrilaterals

E32LL - generates shape functions for live pressure loads on
triangular elements

I TRIDUV - finds membrane strain-displacement matrix for
triangular elements

TRIDW2 - finds curvature-displacement matrix for triangular
elements

PENAL - adds penalty terms to stiffness matrix

VRl2D, VR22D - computes stiffness terms for one and two-dimensional
i elements

E. Overlay (5,0) - Program OV50 - First Variation of Strain EnergyI
The form and function of this overlay are geared directly to the

method of solution of the nonlinear equations. The modified

Newton-Raphson method, as described in Section 4.5, solves the

nonlinear system of equations iteratively and obtains the incremental

displacement vector by the solution of the equation

iX - Xn = - [K(Xm)] {K(xn) (x } - {R)} 3.1

The nonlinear stiffness K(x ) is determined in overlay (4,0)

m
(second variation of strain energy). This overlay forms the product

K(x n)x n  directly as the first variation of strain energy
and subtracts the contributions from the force vector tR}. The

I solution algorithm is discussed more fully in Section 4.5.

Figures 9.30, 9.31 and 9.32 show the subroutine links for OV50. The
major subroutines called are ITER, CVRl, VRI and SOLVE. ITER

controls the interations and checks convergence. The computation of

the first variation is controlled by CVRl. This pulls in all the

I 974B-86B:2
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necessary element information (VRDATA) ruquired for computing the

f irst variation arid performs the computation at an integrdtion point

in VRI. Plasticity calculations are performed by the secondary

overlay (5,1) in program UV51. CVkJ loads program OV5l (Figure

9.31), which has major subroutines as follows:

PLASTC - controls plasticity calculations at each integration point

PLAST - performs plastic stress calculations

Lquation solving is perf ormed in subroutines SOLVI arid SWL ).

F. Overlay (6,0) Program OV60 - Dynamic Response

Program OV60 performs the same function for dynamic response

calculations that OV50 does for static analysis. The procedures are

necessarily more complex because of the time integration. Figures

9.33 and 9.34 show the subroutine links. The controlling subroutine

for OV60 is DYNN which calls CVkl, ODES arid EXPLC. CVRl is the same

as OVSO and performs the same function, i.e., sets up the right hand

side vector for the nonlinear solution as the first variation of

strain energy. The dynamic response obtained using the explicit

integration operator does not require the solution of equations ano

is thereforc called directly by DYNR. Solutions using implicit
integration operator-s are performed by subroutine OUES. ODLS is a

general, multi-step ordinary differential equation solver and is

called once per time step. It controls the time step either in the

automatic mode or in the "fixed" mode in which it only intervenes it
the time step needs to be decreased. It also provides starting

procedures and handles damping. ODES calls MSTEP, SOLVE, NITER and

NEXT. MSTEP computes the predictor-corrector formulae for the four

implicit schemes. There is also a link to a user defined operator by

a call to a miser written subroutine USTEP. This capability is not

currently documented and is not included in LUSER2. NITER controls

the iterations for nonlinear equation solving with SOLVE providing

the solution procedure. Subroutine N[XT provides the coding for
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I time step control. OV60 calls a separate overlay for plasticity,

OVL61 in dynamic calculations, but this appears to be identical with

3 the plasticity routine used in static analysis OVL5I (Figure 9.32).

I G. Overlay (7,0) - Program OV70 - Solution Strategy.

Program OV70 is called by subroutine CONTRL to control the static

nonlinear solution strategy. The controlling subroutine within OV70

is DATA] which controls the output for each load step and calls the

I major subroutines STAT, LQCHK, SOATA and OUTSLU. SNAT controls

load step size and adjusts it if necessary depending on the rate of

1 convergence. It also controls refactoring of the stiffness arid

extrapolation of displacements for the next load step. Subroutine

EQCHK performs an overall equilibrium check but is disabled in the

version evaluated since the progrimming is not yet complete. SDATA

maintains the solution data file (SOD), plastic stress history and

also writes TAPE8 for nonlinear analysis in which periodic

eigen-solutions may be derived. Thus, estimates of bifurcation

buckling loads may be obtained at various points in a nonlinear

loading history. Finally, subroutine OUTSLD controls output of

selected displacements.

H. Overlay (10,0) - Program OV80 - Stress Computation and Output

Uverall control of stress and strain computation and output is

exercised through this overlay. A master routine SIGMA calls

secondary overlays OV81 and 0V82 and major subroutines OUTSLS, SRES,

VRDATA and PREFAB. SIGMA controls stress calculations element by

element. Element data is brought in by means of VROATA. SRES

controls the actual calculation of strains and stress resultants.

The secondary overlays OV81 and 0V82 do the element-specific

computations; OV81 handles l-D (beam) elements while 0V8? deals with

the 2-D elements. Figures 9.37, Y.38 and 9.39 provide the details of

the subroutine links.
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3.4 DATA MANAGEMENT

The storaqe and retrieval of data in STAGSC-1 is accomplished by two separat!

schemes. f irst , there is the tneed to transfer large files for vectur arid

matrix operations between core and mass storage. The size of the files may be

particularly large when time integration is being performed and vectors must

be made available for several time steps. Also, during an eigensolution,

twenty or thirty subspace vectors are being manipulated together with mass and

stiffness matrices. Second, there is the need to obtain relatively small

amounts of data from tables in order to generate element stiffness matrices or

calculate element stresses. These tables are themselves lengthy and the mode

of retrieval may be described as quasi-random access; this is because transfer

of successive sections of data may be from regions of the file which are

adjacent.

3.4.1 FILE MANAGER - FMM

FMM is a routine designed to manage working space in blank common for vector

and matrix manipulations. When FMM is called, the argument first identifies

the number of files to be located simultaneously in core, a list of the file

numbers and their lengths and also a priority indication which says whether

the file is to be saved or not (in mass storage) when removed from core. FMM

provides as output the address in blank common of each file. During

execution, FMM checks if a given file is already in core; determines whether

the space required by the file is available; adds the file to core and

performs other housekeeping functions. The present version does not utilize

the LCM (large core memory) feature available on the CDC 7600.

FMM also makes use of a number of other utility routines for performing

specific operations. The subroutine calls may be found in the Appendix in

Figure 9.3.

30
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I 3.4.2 VIRrUAL MEMORY OPERATIONS - lOGE1k.

The transfer of tabular data from mass storage into core is accomplished using

a bufterinq technique. Such data are used in element matrix generation,

stress calculatiuns, etc., and are stored as tables in one lengthy file. On

the other hand, the data are needed only in relatively small blocks at any

time. The technique used in writing the file is to divide it into a number of

records of convenient length. The record length is chosen so that typically 6

to 10 records can be accomodated in core at a given time. This process is

Ireasonably efficient since the required data are often in adjacent blocks if

not all in one block. The controlling subroutine is IOGETR, which searches

the buffer for the required record and reads it in if it is not already there

(havinq checked for space availability). If the buffer is full, the last

recurd is evicted and written to mass storage. IOGETR calls a few utility

I subroutines and the links are shown in Figure 9.3.

I

I
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ENTRY OVERLAY FUNCTION

LOVSU (1,0) SHELL UNIT GENERATION

LOVEU (2,0) ELEMENT UNIT GENERATION

LOVIS (6,0) MODEL INPUT SUMMARY

(ELEMENT STIFFNESS
__________PRE-PROCESSOR

LOVSV (10,0) DATA BASE PRESERVATION

LOVSI (12,0) SHELL UNIT INTERSECTION

LOVSL (13,0) SHELL UNIT LOADS

LOVEL (25,0) ELEMENT UNIT LOADS

Figure 3.1 Primary Overlay Structure of STAGS]

5407-101
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OVERLAY (7, 0)

PROGRAM OVVU
ELEMENT STIFFNESS

PRE-PROCESSOR

SUBROUTINE

PREVU

SUBROUTINE LOV7 (LEVEL 7 OVERLAYS)

ENTRY OVERLAY FUNCTION

LOVE22 (7, 1) BEAM ELEMENT GENERATION

LOVE41 (7, 2) QUADRILATERAL ELEMENTGENERATION

TRIANGULAR ELEMENTLOVE31 (, GENERATION

Figure 3.2 Secondary Overlay Structure of STAGSI

5407-103
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OVERLAY (0, 0)

I

MAIN PROGRAM STAGS2

I SUBROUTINE

CONTRI.

j SUBROUTINE OVI (LEVEL 0 OVERLAYS)
ENTRY OVERLAY FUNCTION

FETCH DATA FR)M
OV10 (1,0) PRE-PROCESSOR

OV20 (2,0) STIFFNESS DECOMPOSITION

OV30 (3,0) EIGENVALUE SOLUTION

CREATES STIFFNESS0V40 (4, 0) ("SECOND VARIATION")

FIRST VARIATION OF S.E.
OV50 (5,0) (NONLINEAR SOLUTION)

OV60 (6, 0) DYNAMIC RESPONSE

OV70 (7, 0) SOLUTION STRATEGY

OVs0 (10 0) STRESS COMPUTATION

I
Figure 3.3 Primary Overlay Structure of STAGS2
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OELY ETY CALLED 1FUNCTIONOVELA ENRY FROM: k

(511) 0V51 0V50 PLASTICITY CALCULATIONS

OV61OV60 PLASTICITY CALCULATIONS
(6. 1 OV~lOVBOIN DYNAMICS

(10,1) V81 V60 STRESS/STRAIN CALCULATIONS
(10.1) O~l OJ~~FOR 1-0 ELEMENTS

STRESS/STRAIN CALCULATIONS
(10,2) 0V82 ovine FOR 2-0 ELEMENTS

Figure 3.4 Secondary Overlays in STAGS2

5407-104
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4.0 FUNCTIONAL DESCRIPTION

The purpose of this section is to provide a detailed overview of the major

capabilities and analytical methods used in STAGSC-l.

4.1 ANALYSIS OPTIONS

As outlined in the Introduction (Section 1), STAGSC-l is a general purpose,

thin-shell, structural analysis program, designed principally for the

1 nonlinear static and dynamic analysis of thin shells. There are seven

different analysis options available to the user.

o Linear static analysis

0 Bifurcation buckling analysis from a linear stress state

o Small vibrations (stress free state)

o Nonlinear static analysis

o Bifurcation buckling analysis (nonlinear stress state)

o Small vibrations (linear or nonlinear stress state)

o Transient response analysis (linear or nonlinear)

4.1.1 LINEAR STATIC ANALYSIS

Although there are numerous general purpose finite element programs which

provide thin shell elements for linear static analysis, STAGSC-l has a number

of features which make it an attractive choice for this application.

Specifically, these are: (i) built-in geometries for regular shell surfaces

such as cylinder, cone, flat plate, torus, sphere, etc.; (ii) user subroutine

capability for defining surface deviation with respect to some reference

surface; (iii) discrete surface stiffeners (both orthogonal and skewed); and

(iv) multilayer shell wall construction. Thus, complex shell geometries can

be modeled with relative ease.

I
36
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Loads may be applied directly at mesh points (defined by "row" and "column"

numbprs--Section 4.?) as forces and/or moment,, as line ldds or momenlts or 1%

surface tractions. Their directions may be specified in global or local

surface directions. Thermal loads can also be generated by specifying

reference surface temperatures in a user coded subroutine. Temperature

variation in a stiffener cross-section may be prescribed (but no variation is

permitted through the shell wall thickness). Body forces can be specified by

means of acceleration vectors in both translation and rotation. Displacement

boundary conditions may be applied as discrete constraints at interior or

boundary mesh points or by specialized conditions (e.g., simple supports,

clamped, etc.) along shell boundary edges.

The range of basic capabilities for static analysis is therefore quite

adequate for simple stress/displacement analysis of thin shells and includes

unique features (such as the geometric deviations from a reference surface)

which are a definite incentive for its practical use.

4.1.2 BIFURCATION BUCKLING ANALYSIS

The analysis of bifurcation buckling of shells has been an important

capability in STAGS since it was introduced in an early version in about 1970

(see Figure 1.1). This part of the program is therefore one of the most

hiqhly developed and would probably be a common reason for selection by a

potential user.

Bifurcation buckling can be investigated for structures which have linear or

nonlinear prebuckling stress states. An example of linear prestress is given

by a flat plate with in-plane loading only. Bifurcation buckling is then

defined as the value of the load at which a laterally displaced configuration

can also be in equilibrium (secondary loading path). A shell of revolution,

such as a shallow spherical cap, will exhibit nonlinear prebuckling behavior.

Under antisymmetric loading, the shell softens or stiffens depending on the

loading direction (e.g., external or internal pressure). Bifurcation buckling

may then occur as a nonsymmetric deformation mode. Figure 4.1 shows the

characteristic behavior of systems which exhibit linear and nonlinear

prebuckling primary load paths.

37
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For a simple linear prebuckling problem, the eigenvalue analysis provides the

multiplier by which the basic applied load system must be factored to obtain

the critical load level. STAGS allows for the specification of two

independent load systems (FAI and jFB) which are characterized by

multipliers P and P Thus, for example, a cylinder with internal
pressure and axial compression will require the axial load to be designated as

System A and the pressure as System B. For a given pressure loading, the
total magnitude of the two load systems will be

JF}TOTAL PA {F A + PB {FB} 4.1

where A is the eigenvalue at bifurcation.

The case of bifurcation buckling analysis with a nonlinear prebuckling stress

state is an option with far less general applicability. However, the more

sophisticated user who needs to perform a nonlinear collapse analysis for a
general shell can take advantage of a number of subtleties which the nonlinear

bifurcation capability provides. The STAGS theoretical manual [3] offers a

very detailed and thorough discussion of bifurcation buckling and collapse

analysis. Almroth and Brogan [5] give a number of examples in which the

nonlinear collapse loads are calculated and compared with bifurcation buckling

loads obtained using linear prebuckling analysis. It is shown the linear
bifurcation loads may be greater or less than actual nonlinear collapse

loads. For example, an elliptic cone undergoing uniform end shortening will

collapse at a load over twice that predicted by linear bifurcation, while a

cylindrical panel with its ends simply supported ("venetian blind" model) will

collapse at a load five times smaller than the bifurcation load. The

usefulness of the nonlinear bifurcation analysis appears to be in its

application as an adjunct to a full nonlinear collapse analysis. If nonlinear
collapse analysis is performed on an imperfection sensitive structure, the

analysis may fail due to ill-conditioning of the equations at some load step.

A bifurcation buckling analysis carried out at this point will yield a

buckling mode which will indicate the type of imperfection which will direct

the solution into the secondary path (see Figure 4.1(b)). Another practicalI
0918B-84B:?
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situation is where a nonlinear analysis is carried out only up to a design

load. A nonlinear bifurcation analysis at this point will provide an estimate

of the remaining margin to collapse.

4.1.3 SMALL VIBRATION ANALYSIS

The capability of STAGSC-1 with respect to vibration mode analysis is very

similar to the bifurcation buckling capability. An eigenvalue solution for

vibration modes and frequencies may be obtained for a stress-free structure or

for a linear or nonlinear stress state. This is particularly relevant for the

analysis of shell structures where the presence of pressure loading (internal

or external to the shell) is common prior to dynamic loading.

In the case of vibration all eigenvalues will be positive, whereas in the case

of bifurcation buckling negative eigenvalues may be obtained (e.g., in a shear

loaded plate).

In both the bifurcation and vibration analysis options, it is possible to

define by input a uniform stress state directly in terms of direct and shear

stress resultants as an alternative to the generation of such stress states by

means of applied loads, displacements or temperatures.

STAGSC-l also permits the user to specify concentrated (lumped) masses

directly at node points. It should be noted that lumped rotational inertias

cannot be specified.

A further limitation appears to be that vibration modes for unsupported

structures ("free-free") cannot be determined because the eigensolver needs to

solve the system equations. Rigid body constraints will permit a solution to

be obtained.

4.1.4 NONLINEAR STATIC ANALYSIS

Both geometric (large displacements) and material nonlinearities can be

includpd in a STAGSC-l analysis. The geometrically nonlinear analysis is

based on the following;

0918B-84B:2
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I A. Small strain based on engineering stress and strain relationships

(E <0.1)

B. Strain-displacement equations retaining nonlinear rotation terms

(moderate rotations <0.3 radians)

C. Incremental solution of equations with iterations within each

increment using the modified Newton-Raphson method.

IMaterial nonlinearities considered are due to plasticity only. No creep or

viscoelastic behavior is incorporated in STAGSC-I. Plasticity is handled

j according to the White-Besseling theory [7]. This is equivalent to

elastic-perfectly plastic behavior, bilinear kinematic hardening or

multilinear hardening depending on the number of plastic parameters

specified. The theory is outlined in greater detail in Section 4.4.

The plastic strains are computed and used to generate pseudo-force vectors,

i.e., an initial strain method is implemented.

4.1.5 TRANSIENT RESPONSE ANALYSIS

This capability represents one of the major strengths of the STAGSC-I program

since, like the bifurcation analysis, it has been under development for a

number of years. The program can solve transient problems with a wide range

of excitation using one of five different transient integration operators.

System damping may be introduced as Rayleigh viscous damping, with constant

stiffness and mass matrix multipliers, plus an additional contribution from

I velocity dependent forces. In addition, the full range of nonlinearities

available for static analysis can be utilized in transient response.

I Forcing functions may be specified in terms of nodal loading or displacement

patterns, with time dependencies either (a) according to certain specified

S formats or (b) input through a user coded subroutine (FORCET). The specified

formats are:

I
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o piecewise linear function

o triqonometric function

O exponential (e( ay

In addition, initial velocities and displacements can be specified for any

degrees of freedom.

The integration operators implemented in STAGSC-l are as follows:

o explicit (central difference)

o implicit (trapezoidal, Gear 2nd and 3rd order, and Park's method)

The time step for the central difference method is, of course, fixed and must

be selected by the user. For the implicit methods, either a fixed time step

may be used or there is an internal algorithm for automatic time step

control. The automatic feature is, however, presently regarded as

experimental by the developers.

4.2 SURFACE AND MESH GEOMETRY

The STAGSC-l philosophy for developing the shell geometry and finite element

discretization contains some rather unfamiliar concepts and terminology. A

central notion is that of the so-called "shell unit". This can refer to the

description of a specific portion of the shell surface or to the whole

surface. The complete shell may be defined using up to thirty shell units.

In addition, or as an alternative, the structure can be defined in terms of an

element unit. The basic distinction between these two concepts is that the

shell unit defines a geometric surface with a rectangular grid work mapped

onto the surface, while the element unit is actually a direct assemblage of

elements which may or may not define a shell.

The shell unit grid is then overlaid with a mesh of finite elements which may

use all gridpoints of the shell unit or only a subset. This concept allows

the use of a library of standard shell geometries (e.g., cylinder, sphere,

0918B-84B:2 
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torus, etc.) which may then be adapted to model cutouts or stiffened areas by

the appropriate omission or addition of elements. Discrete stiffeners may

also be attached along arbitrary paths on the shell surface.

4.2.1 SURFACE GEOMETRY LIBRARY

There are eleven standard geometries in STAGSC-l which are selected using the

input key ISHELL. The geometries are listed in Table 4.1

'I Each geometry has four edges, two of which may be subsequently joined to each

other to form a closed surface (except for the rectangle and quadrilateral).

Alternatively, edges may be joined to other shell units or may have boundary

conditions applied.

4.2.? USER DEFINED SURFACE GEOMETR

This may be accomplished using the user-coded subroutine LAME. This

subroutine may define global coordinates for the surface and their first order

derivatives if flat elements are being used. This is currently the only

usable option but, anticipating the introduction of curved elements, the user

can define directly the coefficients of the first and second fundamental forms

or, alternatively, all the derivatives necessary for internal computation of

the coefficients.

4.2.3 SURFACE GRID AND ELEMENT MESH

Given that a reference surface geometry has been defined, a gridwork must be

mapped onto the surface. In its simplest form, this is accomplished by

specifying numbers of rows and columns which generates a regular gridwork in

terms of the surface coordinates. Additional options are:

o irregular grid spacing by means of definition of different segments

o grid definition by user subroutine TUGRID

The element mesh is conceptually distinct from the surface grid. This is

specified separately and may be defined in a number of ways. In its simplest

0918B-84B:2
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form, the element mesh is identical with the surface grid in that all grid

points define element nodes. Alternatives are: I
A. Irregular mesh in which cutouts can be defined.

B. Specialized mesh in which grid points are used selectively and a mesh

of varying refinement can be obtained.

C. Subregion or "patch" concept in which groups of elements are defined
within certain row and column boundaries. This allows use of

different element types in different regions of the shell surface.

4.2.4 ELEMENT UNITS

An element unit can be defined as a "stand-alone" unit which describes the

total structure or it may be used in conjunction with a shell unit. In the

latter case, element unit nodes can be nodes on the shell unit or separately

defined (auxiliary) nodes or a combination. Thus, parts of the structure

which are not shell-like can be connected to the shell. This is in addition

to the capability which exists in shell units for specifying stiffeners on the

shell surface.

Node geometry for the element unit must be defined individually for each node

or by means of the user subroutine USRPT or by a combination of both. No

other options are available.

The directions of the degrees of freedom can be separately defined for the

auxiliary nodes in the element unit.

4.3 FINITE ELEMENT LIBRARY

The core of the finite element library in STAGSC-l is the series of triangular

and quadrilateral shell elements based on the Clough-Felippa quadrilateral

bending element [8]. Since these are all flat elements, the actual curved

shell geometry is always approximated by a faceted surface. This has

implications for interelement compatibility which will be discussed later.
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In addition to the shell elements there are membrane versions of the elements

and also a series of beam elements designed to be compatible with the shells.

STAGSC-I also has provision for a series of general linear and nonlinear

springs and also transition membrane and plate elements. The latter are

designed for regions of changing mesh refinement. Neither the springs nor the

transition elements were implemented in the version of the program under

evaluation. In total, there are twenty elements currently available in

STAGSC-l, of which six are beam elements and fourteen are membrane and shell

elements. Table 4.? provides a summary description of the elements

implemented.

The bar and beam elements are fairly standard except for 220 and 221 which

have quadratic shape functions for twist. The inclusion of the center node

makes them compatible with the majority of the shell elements in STAGSC-l.

Also, the center node provides better results when displacements (rotations)

are relatively large. For a general thin shell analysis program such as

STAGSC-l, the single most important aspect of the program has to be the

properties and performance of the shell elements themselves. As has already

been mentioned, STAGSC-l does not, at present, have available a curved shell

element and this introduces inevitable incompatibilities. However,

considerable effort has been spent by the developers on minimizing these

shortcomings.

The basis for both the triangular and quadrilateral elements is the

Clough-Felippa triangle (LCCT-12 in Reference 8). This is a triangular

bending element consisting of 3 sub-elements with interior nodes condensed

out. The lateral displacements have therefore a piecewise cubic

distribution. The addition of in-plane degrees of freedom and membrane shape

functions gives rise to the quadrilateral element. Reference 8 describes a

quadrilateral bending element (Q-19) which is derived from four LCCT-12

elements with the internal freedoms condensed out and the mid-side rotations

on the four other edges constrained to be the average of the adjacent nodal

components. The 420 (QUARC) elements are variants of the Q-19 element with

the addition of translational freedoms at the mid-side nodes parallel and

nnrmal to the edges. Table 4.2 gives details of the resulting shape functions.
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The 410 (QUAF) elements were specially developed to remove the displacement I
incompatibility which exists when flat shell elements do not lie in one

plane. If edge displdcements are to be compatible, then the transverse

displacement shape functions must be of the same order as the in-plane

functions. The in-plane functions must therefore be cubic. This was

accomplished in element 410 by introducing a normal rotation at each of four

corners. Element 411 carried this one step further by introducing 2 rotations

at each corner, thus permitting individual rotation of each adjacent side and

thereby permitting shear strain at the corner. In addition, tangential

displacements at mid-side nodes are also included in this element.

4.4 CONSTITUTIVE RELATIONSHIPS

The number of constitutive behavior models available in STAGSC-l is somewhat

limited. Orthotropic elastic behavior and plasticity are the two major

options. Creep or viscoelasticity are not available in the present version of

STAGSC-I.*

Elastic properties are specified with respect to principal material directions

for an orthotropic material. Specialization to the isotropic case is

trivial. Plasticity is based on the White-Besseling (mechanical sublayer)

model. The theoretical manual [3] discusses various types of plastic

constitutive behavior and describes the White-Besseling model in some detail.

An advantage of the W-B model is that the uniaxial stress-strain curve can be

represented with fair accuracy by choosing a sufficient number of components

(or "sublayers"). The minimum number of components (2) automatically yields

the bilinear kinematic hardening theory.

The input of material properties is based on the specification of a material

type number. Up to 30 different material types may be specified. In this way

different material properties can be assigned to different regions of the

structure (as defined by different shell units). Also, mutilayered,

*Development of a creep version is being sponsored by NSRDC. The creep

implementation is to be the same as in the BOSOR 4 program [4].
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composite-shell-wall construction can be simulated by defining different

orthotropic properties for each layer. There is no provision for

I incorporating temperature dependence of material properties. Althouqh the

users manual [2] states otherwise, material properties cannot vary

N continuously through the wall thickness.

The elastic properties may also be input through a user written subroutine

j WALL. This gives the user the ability to vary the elastic coefficients

continuously over the shell surface. The elastic-plastic stress-strain data,

however, can only be input via cards. Any variation throughout the structure

must he defined by varying the material type.

In summary, the constitutive capability in STAGSC-l is adequate for shell

structures operating in an environment where temperatures are below the creep

range for the material. A simplified approximation to elastic temperature

dependence could conceivably be achieved through the user subroutine WALL by

correlating temperature, spatial position and elastic properties.

4.5 LINEAR AND NONLINEAR ANALYSIS

STAGSC-l is primarily a tool for nonlinear analysis although a purely linear

analysis option is available and is very economical. Therefore, linear static

and dynamic analyses may be appropriately performed for shell problems using

STAGSC-l because of its many features which facilitate the analysis of

stiffened or unstiffened shells (see Sections 4.1, 4.2, 4.9 and 4.13).

However, the bulk of the developmental effort behind STAGSC-l has been devoted

to its nonlinear solution algorithms and to the implementation of a finite

element library. It is in this context that the program must mainly be

discussed.

The basic method of equation solving is the modified Newton-Raphson method

(MNR), with periodic updating of the stiffness ("refactoring" in STAGSC-l

terminology). The program is self-adaptive to a certain extent in that it can

switch to a full Newton-Raphson method (FNR) if indicated by convergence

behavior. It must be pointed out, however, that the handling of

I nonlinearities due to plasticity is by the initial strain method. Thus, the
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stiffness matrix is never modified to reflect changes due to the current

material state. In these circumstances, the method must be viewed as a hybrid

technique.

In order to discuss the solution procedure more specifically, some basic

equations will be developed. For a static, nonlinear problem the equations of !
equilibrium may be written as a Taylor expansion of the total force vector

rF(x)] (sum of applied, restoring and residual force vectors) about the

currently deformed state;

iF(xn) } = {F(x ) } + a{Fi (x I - {X) + terms of higher
n+l n a{x (x} = x n+l n order

- {F(x n) + aF _ i)=i. - x} + terms of higher order

=0 4.2

In this notation, the derivative - is the negative of theaIxI ix )= xn
nonlinear stiffness matrix [K(Xn) ] .

A fundamental concept of the STAGSC-l program is to treat the product vector

[K(x)]{axl as a nonlinear operator L acting on the incremental

displacements. Thus, equation 4.2 becomes:

{F(xn+01 = IL(xn)) - {R} + (higher order terms) = 0 4.3

where the operator L is the first derivative of the strain energy functional.

The nonlinear stiffness matrix [K(x)] is then the first derivative of L,

[L'(x)]. The significance of this goes far beyond the formal statement of the

equilibrium conditions because the nonlinear solution algorithm is based on

the direct formulation of {L(x)i. This has important advantages in the

implementation of the Newton-Raphson method. This may be stated in the

following terms

{x n+I  {x - [L'(x n) -  {F(x n or

{Xn 1 l }  - (Xn} = [L'(x n)]- ({R} - {L(x n)}) 4.4
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Fquation 4.4 implies a full update of the stiffness matrix and re-solution

(refactorinq in STAGS terminology)'at each iteration. Basically, a modified

Newton-Raphson procedure is implemented which performs a refactoring of the

stiffness only when indicated by convergence criteria. The MNR algorithm

implemented in STAGSC-l can be written then as

I n+l) - xn } = [L'(Xm)-l ({R} - (L(xn)}) 4.5

where [L(xn I is represented by the factored stiffness matrix obtained at

some previous iteration or step. The operator L(xn) is, however, defined

for the current solution vector txn since it is formed directly as a

vector.

The nonlinearities included in the computation of L(x n) are purely geometric

and plasticity effects are handled separately as pseudo-force contributions to

the loading vector (R}. Thus, plasticity corrections are computed after

each MNR iteration and the modified vector {R} is then used in the next

iteration.

Figure 4.2 illustrates the MNR algorithm and plasticity solution in an overall

sense as implemented in STAGSC-l. It should be pointed out that this is a

conceptual flow chart and does not represent the actual program flow.

The parameters over which the user has control at the time of input are

o total number of times the step size may be cut (NCUT)

o total number of refactorings allowed (NEWT)

o initial solution estimate (NSTRAT)

o convergence tolerance (DELEX)

o relaxation factor (WUND)

By the use of a negative value of NEWT, refactoring can be enforced at desired

load step intervals (including every iteration). Note: the program

automatically doubles the load step after two successive steps with single

iteration convergence.
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Tillerson, Stricklin and Haisler [9] in their excellent survey of numerical I
methods for solving nonlinear problems, conclude that the MNR method is

probably one of the most widely used for general nonlinear problems and that

for structural problems it is best suited for those in which geometric

nonlinearities predominate. Some doubts are expressed about including

material nonlinearities because of the problem of unloading. The situation

can arise using MNR where elastic unloading is not correctly handled because

the factored stiffness corresponds to a "tangent" stiffness based on a prior

loading step. On the other hand, Bushnell [10] describes a subincremental

plasticity fomulation in which plasticity calculations are performed outside

an inner Newton-Raphson loop. The question of plastic unloading was not

discussed, however.

The STAGSC-1 method of plasticity calculations between MNR iterations appears

therefore to raise some questions about its use in dynamic plastic or static

cyclic loading problems.

The STAGSC-l implementation of MNR seems to be basically efficient in that the

direct calculation of the vector iL(x)} (eqs. 4.4, 4.5) is analogous to

the method of calculating a pseudo-force vector to account for

nonlinearities. Moreover, the strategy parameters available to the user

provide a degree of control over the MNR procedure which is not available in

other programs, e.g., ADINA [11,12].

4.6 SOLUTION OF EQUATIONS

STAGSC-l employs a conventional Cholesky triangular decomposition with forward

and backward substitution for solution of equations. Storage is based on the

"skyline" vector concept in which no zero elements beyond the last non-zero

element in a row are stored. The skyline vector stores the location of the

last non-zero element in a given row. The procedure is outlined in the

theoretical manual [3] and discussions may be found in the literature, e.g.,

Bathe and Wilson [13]. No other solution options are currently available in

the program.
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4.7 FIGENVALUE ANALYSIS

Eiqenvalue analysis is required for both buckling and vibration analyses. In

principle, there is no fundamental difference between the two eigenvalue

problems. However, in practice, the bifurcation buckling problem requires

solution normally only for the smallest buckling load. For certain types of

buckling (e.g., pure membrane shear) there can be eigenvalues which are equal

but opposite in sign. For vibration problems, the eigenvalues must always be

positive and a large set of eigenvalues and eigenvectors may need to be

determined. Thus, there is a need to employ a method which is suitable for
both types of problem and which is relatively "rugged," i.e., capable of

yielding satisfactory solutions for a wide variety of modeling situations.

The method implemented in STAGSC-I is basically the subspace iteration

method. This is described in depth by Bathe and Wilson [13] and somewhat
sketchily in the theoretical manual [3]. Curiously, the manual does not state

explicitly that this is the technique being used.

Subspace iteration, as described in Ref. [13] simultaneously obtains a reduced

number of eigenvectors. An initial choice is made of a set of preliminary
independent vectors X which are said to span a subspace of the complete set of

M eigenvectors. A single inverse iteration step is performed in which a new

set X is obtained from solution of the equation

KX = MX, 4.6

where both K and M are of order mxm and X and 7 are of order mxp. A new

eigenvalue problem is then solved in terms of the reduced matrices K and V1
which are obtained from

and K = t K 7 (pxp) 4.7

R = 7t M f . (pxp) 4.8

The reduced eiqenvalue problem can be stated as KQ = ,Q 4.9

5 where A is the matrix of eigenvalues.
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An improved estimate of the subspace vectors X is then obtained as

X = XQ 4.10

at which point the whole process is then repeated.

STAGSC-l implements this method with some modifications. As is pointed out by

Bathe [13], several inverse iteration steps may be performed before solving

the reduced eigenvalue problem (in order to reduce the number of

eigensolutions performed). This is done in STAGSC-l, with orthonormalization

of the subspace vectors with respect to K or M at each step of the iteration.

Normally, two inverse iterations are performed at the start and three (per

eigensolution) after the first reduced eigensolution. Two other extra

features are incorporated. The first is the introduction of a spectral shift

parameter o in the inverse iteration sweep. Thus the solution obtained is

for the equations

[K - oM] X = MX 4.11

and the eigenvalues obtained for the reduced system are

= - UI 4.12

The second modification is to accelerate the convergence of the

orthonormalized vectors by means of Chebyshev polynomials. This step is

performed before the solution of the reduced eigensystem. According to the

developers, this technique has been known to be not always effective,

particularly with some computer installations. Its use is controlled

internally and depends on the convergence. Figure 4.3 provides a qualitative

flow chart of the major functions in the eigensolution system. The method of

solving the reduced eigenvalue problem is a combination of Householder's

tridiagonalization transformations with the QR method of extracting

eigenvalues.
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4.8 TRANSIENT INTEGRATION

Transient dynamic analysis for linear and nonlinear shell structures is one of

the major capabilities in STAGSC-l. The numerical integration with respect to

time of the equations of motion can be accomplished for general time histories

of applied load or displacement. The program contains a library of five

different algorithms for performing the transient integration which consists

of one explicit scheme (central difference) and four implicit methods. The

implicit schemes are as follows:

A. Trapezoidal (Newmark, o = 1/4)

B. Gear's second order

C. Gear's third order

D. K.C. Park's method

It is clear at the outset, that for such an array of options for implicit time
integration to be useful, the program user needs to possess a greater than

average level of sophistication in order to make an appropriate choice. The

users manual [2] seeks to minimize this difficulty by generally recommending

the trapezoidal rule for linear structures and the Park method for nonlinear

structures. The theoretical manual [3] discusses the background of the central

difference (explicit) method as well as the implicit methods. In order to aid

in the discussion of these methods, Figure 4.4 has been provided in an attempt

to make clear the basic differences between the methods available in STAGSC-l

and other methods in common use. The characteristics of the STAGSC-l methods

with regard to stability, numerical damping and frequency distortion

(dispersion) are summarized in Table 4.3. Although the central difference

method has been implemented, it is not particularly well suited to its use in

shell problems where lower frequency modes usually dominate the response of

the system. The low stability limit requires a very small time step which can

largely offset the inherent efficiency of the explicit approach. For the

majority of problems therefore, the concern must be with the relative merits

I of the four implicit methods provided. With the exception of Gear's 3rd order

method (G3), the implicit methods are unconditionally stable for linear

3 conservative systems. This is referred to in the literature as A-stability

[15,16]. G3 has a very small region of instability for a combination of
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small time steps, low frequency and low damping. For non-conservative I
systems, G2 , G3 and the K.C. Park method (KCP) are conditionally stable as

are the Wilson-o and Houbolt methods. The trapezoidal method is not stable

under these circumstances.

The question of greater interest to a potential user of STAGSC-l is the

performance of these methods in the context of nonlinear response. The

stability of time-integration operators for nonlinear structural dynamics

problems has also been discussed in the literature (e.q., Refs. 16 and 17).

Implicit operators which are unconditionally stable for linear problems have

been observed to exhibit instability in some nonlinear problems. The

inference has been drawn that the stability properties of the implicit

operators are lost or modified in the nonlinear regime. Reference 17

(Belytschko an Schoeberle) presents an energy-based proof of unconditional

stability for the Newmark-a method (t=I/4) for the case of material

nonlinearity. The proof is subject to the restriction that the internal

energy must increase monotonically with strain and remain positive-definite.

The assumption is made that the unconditional stability is preserved when

geometric nonlinearities are also present provided that the requirements on

the internal energy are still met. It is concluded that the loss of stability

in some applications is due to errors accumulated during the solution process

and not to the integration operator per se.

A somewhat different conclusion is arrived at in Reference 15 (Park) in which

nonlinear stability equations for a number of implicit operators are

developed. These criteria apparently include the character of the

nonlinearity (e.g., hardening or softening). Stability boundaries are

obtained for the Houbolt, Wilson, Park and Newmark-a methods. It is

concluded that the approximations inherent in the solution procedures

(initial-strain or tangent stiffness methods) are responsible for the

departures from unconditional stability.

Thus, in a sense, both evaluations arrive at the same conclusion (i.e.,

unconditional stability is affected by solution approximations) but the

implications are quite different.
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It would appear that on the basis of stability the methods provided are
i probably quite satisfactory for nonlinear analysis, but the user ought to be

aware that any given problem should be evaluated with respect to its likely

nonlinear behavior when choosing the method of integration. With respect to

I accuracy, the four implicit methods are comparable. It does appear, for a

nonlinear response that the damping and dispersion of KCP are better than the

g Houbolt method.

)4.9 USER CODED SUBROUTINES

As may be expected in a program developed for the solution of nonlinear

problems, STAGSC-l has a significant capability for the user to provide his

own coding for problem specification and execution. Thus, there are a total

of thirteen dummy subroutines in the program for which the user can provide
FORTRAN coding. Some of the subroutines provide additional capability while

others are mainly used to reduce the bulk of input data. Each of the

subroutines will be briefly described and commented on.

A. CROSS--This routine defines cross-section dimensions and material
properties for beams and stiffeners. Geometry and material type can

be specified as functions of spatial coordinates. Used in addition

to, or instead of data cards.

B. FORCET--Describes variation of load factor with time for load system

A or B. Used instead of data cards.

C. UGRID--Allows independent specification of grid coordinates for mesh

generation in terms of reference surface geometry. Necessary for
quadrilateral elements in a quadrilateral plate. j

D. LAME--Allows definition of a shell unit geometry not included in the

twelve built-in options.I
E. SKEWS--Defines orientation on shell surface of the attachment line of

3 a discrete stiffener which does not follow the reference surface
I gridlines.
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F. TEMP--This is the only means by which temperatures can be specified.

Temperatures can vary with surface coordinates and through a

stiffener cross-section.

G. UCONST--Defines linear constraint conditions using Lagrange

multipliers. Must not be used with explicit integration.

H. UPRESS--Defines space and time variation of pressure loads. Pressure

may be "follower" or "live" loading.

I. USRLD--Defines spatial variation of loads including initial

displacements and velocities. Saves preparation of bulky sets of

data cards.

J. USRELT--Defines element connectivity for an element unit. Essential

when there are more than a few elements.

K. USRPT--Defines node point geometry for element units. Essential when

there are more than a few nodes. May also define additional points

in a shell unit.

L. WALL--Defines shell wall construction (layers, composite material,

stiffeners, wall thickness) and material properties which may vary

over the reference surface. Material properties may not vary within

a layer. Does not apply to plasticity data.

M. WIMP--Defines small, geometric perturbations of the shell from the

reference surface in terms of first spatial derivatives.

4.10 RESTART CAPABILITY

For practical, nonlinear structural analysis, a useful computer program must

include a flexible restart capability. Ideally, the user should be able to

restart the analysis at any desired point so that a different loading strategy

may be used or perhaps an eigenvalue solution obtained. STAGSC-l has such a

capability. At the user's option, three separate files may be saved for
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restart (TAPE22, 23 and 24). The solution is saved on TAPF2 while TAPE 23

and TAPE?4 contains the stiffness matrix and the factored stiffness matrix.

Normally, upon restart, refactorization occurs but the user can override this

by using TAPE24. The contents of TAPE22 include displacements, velocities and

j plastic strains, depending on the type of analysis. Additionally, stresses,

strains and stress resultants can be saved on the same file for

post-processinq.

STAGSC-l provides the option to save data either at every load (time) step or

from the final three steps. This could be improved by permitting saving at

specified load step intervals as in the MARC program. The advantage of this

is that the flexibility to restart at a number of stages is retained but with

substantial savings in file space. This can be a significant factor for the

analysis of a real nonlinear problem.

4.11 INPUT AND OUTPUT

Input and output are often the basis for user attitudes towards a structural

analysis program. Factors which influence these attitudes are many but the

major ones are

o logical input flow

o input format (free form or otherwise)

o ability to provide comments

o ease of generating repetitive data

o understandability of input instructions

o control over output

o format and labeling of output

A user's reaction to the input required for a new program is often influenced

by experience with other programs which, of course, may place the new program

in a good or bad light depending on the previous experience. Nevertheless,

j the concept has arisen of "user friendliness" as a measure of the attitude

which a program may develop in the user. The meaning of this is obviously

subjective, but in such a context STAGSC-l would probably rate as average.

Ease of input depends strongly on the logical flow of the input stream and the
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understandability of the input instructions. STAGSC-l input is quite logical I
and if the input manual is followed carefully a new user may expect to obtain

a set of input which will execute successfully after, perhaps, a couple of

tries. However, it is apparent that both the input logic and the input

instructions are strongly linked to the programming and are not based on some

concept of what might constitute "good" input. This is not necessarily a

criticism of the input but more a description of the type of input. Excellent

features are the free-form input and the ability to include user commenting.

STAGSC-l input would lend itself eadily to the interactive mode since the

instructions used in the manual are already in the required form.

If the user selects any of the twelve standard shell units, the input required

for the generation of bulk data is minimal. Also, the constraints that

provide compatibility between shell units are easily imposed. For other

geometries, the user written subroutine LAME may be used to define the

reference surface. For element units, the choice is either individual input

of each node and element or automatic generation using user subroutines USRPT

and USRELT. Individual node and element input is unacceptable for more than a

few elements so the use of subroutines is almost always required. An

improvement would be the inclusion of simple linear mesh generators and

element pattern generators to provide a rapid means of generating meshes for a

large class of problems.

For load input, the ability to input both concentrated and distributed loads

either individually at mesh points or along specified rows and columns is a

qood basic feature. This, toqether with the user subroutines USRLD and IIPRESS

for generating loads provide a generally satisfactory capability. For element

units, not all load input options are yet operational, e.g., distributed

forces and moments.

Output control may be exercised separately on displacements, strains,

stresses, stress resultants, stresses and strains at yielded points and

forces. The data for each shell unit is output as a block. However, the

frequency may be specified differently for each output quantity

(displacements, stresses, etc.) and also for each shell unit. Based on some
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limited experience, it seems that if different frequencies are specified for

say stresses and displacements, both will be printed out at the higher

frequency which is contrary to the manual.

In addition, selected Stresses and displacements may be output at each load or

time step. Thus, if it is desired to output data for a certain portion of the

structure at certain load step intervals, the only means of doing this is to

specify a special shell unit just for this region of the structure (since all

displacements, etc., are output for a shell unit). This may be inconvenient

and therefore some additional selectivity is needed to cater for such a

situation.

I
4.12 POST-PROCESSING AND PLOTTING

Currently, post-processing with STAGSC-l is only partially operational. Its

developmental status is not yet comparable with that of the analysis program

which is quite a serious disadvantage when performing nonlinear analysis.

Moreover, in the case of a nonlinear analysis, the user often needs the

ability to access the solution data file and perform his own post-processing
directly. A typical requirement would be to extract inelastic strain
histories from the solution and post-process them according to design code

criteria, e.g., the ASME Boiler and Pressure Vessel Code, Code Case N-47. The

necessary descriptions of the structure of the solution files are not

available in the documentation however, so this option is unavailable to the

user.

The STAGSC-l post-processing program (STAPL) is executable in tandem with the

analysis or separately by saving the post-processing file (TAPE22). STAPL has

been developed from routines published by NASA [18] which provide deformed and

undeformed geometry plots and also contour plots. The separate routines were

merged by Anamet Laboratories [19] and further developed by Lockheed. The

current range of capabilites listed in the user's manual [2] are as follows:

A. geometry plots--deformed, undeformed and exploded (useful for mesh

checking)
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B. contour plots--displacements, velocities, force residuals*,

eiqenvectors, force resultants, strains, stresses, temperatures*,

masses*, initial conditions and loads.

The items marked with an asterisk are not yet operational according to the

manual. Other features advertised which are also not operational are geometry

plots showing only shell unit boundaries, solution quantities as vectors

omanatinq from the nodes; and automatic plot scalinq. Iviluation of STAGS(C-I

plotting is not included in the scope of this report.

Other development work has included the interfacing of the GIFTS* interactive

graphics package for mesh generation with STAGSC-l. This combination is

rcirrently being evaluated by ONR.

4.13 SPECIAL STAGS FEATURES

This section is intended to highlight those features of the STAGSC-l program

which serve to differentiate it from other finite element nonlinear structural

analysis programs. To begin with, STAGSC-l is the outcome of approximately

thirteen years of development effort in an aerospace environment. It is this

environment which has stimulated the development of a number of analysis

programs for shells of revolution, e.g., BOSOR, DYNAPLAS, SATANS, etc. [201.

STAGSC-1 is an outgrowth of this effort which extends the capabilities to

qeneral, three-dimensional thin shells. Other finite element analysis

programs (e.g., MARC) have incorporated shell elements in their element

libraries but supposedly cannot match the greater efficiency of the special

purpose shell programs.

Therefore, the basic advantage of STAGSC-l is its emphasis on shell analysis.

The inclusion of beam and spar type elements does not make it a natural choice

for solely beam or truss types of structure, although it certainly is able to

*GIFTS is a finite element mesh generation and analysis program originally

developed for the analysis of ship structures and supported by ONR.
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I
perform such analyses. In this context one may pick out a number of features
of the program which are probably unique to STAGSC-1. These will be discussed

briefly in the remainder of this section.

A. Shell Unit ConceptI
This has already been introduced and described in Section 4.2. Thef distinguishing feature is the underlying grid on which the element

mesh can be overlaid. This makes it possible to define a library of

standard geometries with a minimum of input. Thus the mesh

variability which may be required for a specific problem can be

divorced from the generation of the surface geometry.

B. Initial Imperfections

The ability to specify an imperfect geometry as small perturbations

to a basic reference geometry is a feature of great value in a
program oriented towards shell buckling and collapse. To achieve

this in a general purpose program, if possible at all, would probably
require the writing of a special mesh generator for each problem. In

STAGSC-1, even if the reference surface is not part of the library,

the writing of the LAME subroutine for the reference surface and WIMP

for the initial imperfections is likely to be the most convenient way

of generating the data.

C. Layered and Composite Shell Wall Construction

Relatively complicated shell wall designs can be handled by

STAGSC-l. The types which may be included are as follows:

(1) multiple anisotropic layers

(2) multiple fiberwound layers

(3) walls reinforced by corrugated skin

(4) wall properties defined by a shell wall stiffness matrix

(5) any of the above with "smeared" stiffenersI
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Multiple anisotropic layers are specified by layer thickness, I
orthotropic elastic material properties and a principal direction for
these properties. This can also be used for fiberwound materials

where the layer properties are available. Corrugated skin

reinforcement is modeled by trapezoidal shaped corrugations whose

cross-section dimensions are input. The shell wall stiffness matrix
method is available for layered composite walls whose overall

stiffness properties are known.

D. White-Besseling Plasticity Model

This is not a commonly implemented constitutive model of plasticity

although the Mroz model, to which it is related, is available in the

PLANS program [20]. The user should be aware that although there is
some evidence [21] to suggest that methods based on the mechanical

sublayer concept model reversed loading behavior well for some
materials, there is not as yet a substantial body of testing or

analytical experience to validate its use fully. The potential user
should therefore be prepared to perform his own validation for his

application.

E. Library of Load-Time Histories

STAGSC-l contains three specific load-time histories for transient
integration. These are

(1) trapezoidal variation

(2) trignometric variation--sinusoidal, cosine square impulse or

cosine square ramp functions

(3) linear ramp and exponential decay

These basic inqredients can model a significant variety of

transients. However, more general forcing functions may require the

user-supplied subroutine FORCET.
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TABLE 4.1

3 SHELL SURFACE GEOMETRIES

No. of3 ISHELL Description Coordinates Comments

2 Rectangular Plate 4 4 edge coordinates

3 Quadrilateral 8 8 corner coordinates
Plate

4 Annular Plate 4 2 radii, 2 subtended angles

5 Cylinder 5 2 axial, 2 subtended angles, I
radius

6 Cone 6 2 axial, 2 subtended angles, 2
radii

7 Sphere 5 2 meridional and 2 azimuthal
angles, 1 radius

8 Torus 6 2 meridional and 2 axial angles,
bend radius, cross-section radius

9 Elliptic cone or 7 2 axial, 2 angles, 2 major and
or Cylinder 1 minor radii (similar cross-

sections)

10 Paraboloid 6 2 axial, 2 angles, distances from
apex to focus and to smaller end

11 Ellipsoid 6 2 meridional and 2 azimuthal
angles, major and minor radii

12 Hyperboloid 7 2 axial, 2 angles, 3 coordinates
to define asymptote
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I
5.0 VERIFICATION EXERCISES

I The verification procedure followed for the purposes of this evaluation was

simply to execute three different problems which were part of the STAGSC-l

program file supplied by Lockheed. The purpose of the verification was solely

to ensure that the version, as modified for the CDC 7600, was, in fact,

functioning correctly on the Westinghouse system. This does not constitute

verification in the normal sense*, but was considered to be sufficient in view

i of the fact that the problems to be run in the course of the evaluation would

themselves provide substantial verification. The verification problems and

their solutions will be described in this section.

5.1 SHALLOW ARCH PROBLEM

The first verification exercise was a static, nonlinear analysis of a shallow

arch with a uniform, radially inward pressure loading. Figure 5.1 shows the

model data. The boundary conditions are simple supports at each end of the

arch. The solution converged using three load increments with 6 to 8

iterations required for each increment. One refactoring occurred during the

final increment. Figure 5.2 shows the center displacement plotted against

pressure. The solution obtained agreed identically with the output generated

by Lockheed. No analytically based solution for this problem was available

for purposes of comparison.

5.2 BUCKLING OF AN ANISOTROPIC FLAT PLATE

The program options involved in this problem include an eigenvalue analysis

for buckling, with material axes rotated with respect to the global axes by
45O. The bifurcation buckling load is 124.6 lb/in. Figure 5.3 shows the

plate geometry, the applied loading and the buckling mode. No

analytically-based solution was available, but the results agreed with the

Lockheed output.I

I*Verification is nominally the responsibility of the developer, and is intended
to ensure that the capabilities provided by the developer are, in an isolated
sense, functioning.I
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5.3 CIRCULAR RING WITH INITIAL VELOCITY 3
Figure 5.4 shows the geometry for a circular ring segment with a uniform, g
radially-inward initial velocity. Radially symmetric boundary conditions give

rise to a solution which predicts purely radial motion uniform along the

segment. Figure 5.5 shows the time history of the radial deflection I
response. The measured period yields a frequency of 952.4 Hz which compares

with the exact value of 1000 Hz [36] (-4.8% error). The results agreed

identically with the Lockheed output.

These three checks, when first attempted, failed to execute and identified a

coding error which was corrected after consultation with Lockheed. The

subsequent successful executions confirmed that the program was performing

correctly on the Westinghouse system.
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I Figure 5.1 Shallow Arch Problem
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I

I 6.0 ADVANCED EVALUATION EXERCISES

I The most effective and convincing form of evaluation of a structural analysis
computer program is the obtaining of results from the execution of special

Iproblems designed to test in-depth the various options of the program both
individually and in combination. This basic idea was developed in

I considerable detail by Nickell [1]. It was made clear in that discussion that

these are not conventional verification exercises but problems chosen and

executed in order to study specific aspects of the behavior of the elements in
the program library together with the solution algorithms. The rigorous

evaluation of a sophisticated program such as STAGSC-l based on these

guidelines is a very large task. The scope of the present work is therefore

limited to provide an in-depth study of some, but not all, of the capabilities

of the program. The areas selected for the advanced evaluation are as follows;

o Element convergence

o Eigenvalue extraction

o Transient integration

o Nonlinear solution algorithm

These will be described and the results presented in the four following

subsections.

6.1 ELEMENT CONVERGENCE

A dual approach has been adopted in investigating the convergence of STAGSC-l

elements. First of all, a direct convergence study has been made by grid
refinement of two multi-element problems which have well documented

solutions. The problems selected are:

A. a cylindrical roof (or barrel vault) simply supported at each end and

subjected to gravity loading.i
B. a square flat plate with clamped edges and uniform pressure (linear

S I and nonlinear).
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These have been extensively studied [14, 22, 23] using both analytical and

numerical methods of solution. Also the convergence properties of other

elements for the cylindrical roof are well known. The second approach is to

determine the eigenvector components of the element stiffness matrix and

resolve the energy content for simple loading cases into the various

eigenmodes. The spectrum of eigenmodes gives insight into the deformation

responses which can be obtained using a particular element and can also show

whether there are any spurious (zero energy) modes inherent in the element

formulation.

In this work, attention has been confined to the quadrilateral shell

elements. The reasons for this are:

A. STAGSC-l is primarily a shell program;

B. The triangular shell elements are embodied in the qu,,drilaterals.

6.1.1 CYLINDRICAL ROOF PROBLEM

The qeometry of the roof is shown in Figure 6.1. For gravity loading, there

are two vertical planes of symmetry and hence only one quarter of the

structure needs to be modeled. The majority of published solutions to this

problem assume a zero value for Poisson's ratio.

For the present investigation, the two classes of quadrilateral plate element

(410 and 420 series) were tested. Two of the 420 series (420 and 421) were

used but both failed to obtain a solution. In each case a message was printed

indicating ill-conditioning of the stiffness matrix and termination of the

solution because of this. Reasons for this failure are not understood and are

beinq studied by Lockheed. The mesh configurations used for the 1/4 model

(see Fiqure 6.1) ranged from 2 x 2 (4 elements) to 10 x 10 (100 elements).

Two displacement measures of convergence were used and gave similar results.

These were the vertical deflections at the mid-point of the free edge (Point

B) and the mid-point of the whole roof (Point C). Figures 6.2 and 6.3 show

the deflections WR and WC plotted against total number of degrees of

freedom. Fiqure 6.2 shows also the theoretical solution for deflection WB

based on shallow shell and deep shell theories (see Reference 23). Probably

the hest numerical solutions to this problem have been achieved using the

0920B-86B:?
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ABAQUS [25] and the MARC [26] finite element programs and these are included

ac benchmark comparisons. In addition, the shallow curved shell triangular

element of Cowper, Lindherq and Olson [24] is shown as representative of the
earlier approaches to shell element formulation based on a shallow shell

approximation (Novozhilov theory). The ABAQUS element is the thin shell

isoparametric element due to Ahmad, whilr the MARC element 24 is based on the

de Veuheke element and Koiter-Sanders shell theory and is also doubly-curved,
isoparametric. Both of these elements give very accurate results using only

four elements.

The STAGSC-l elements, being flat, approximate the geometry relatively crudely

for the coarsest mesh (4 elements) and the results are correspondingly

inaccurate. The 410 element for the 4 element mesh overestimates the free

edge displacement W and the center displacement WC by about 41% in each

case. The 411 element performs better for the coarse mesh but uses 99 degrees

of freedom instead of 63 (410). However, the convergence properties of the

411 element appear rather worse than the 410 despite the higher order shape

functions. Moreover, its initial high convergence rate gives an overshoot

with respect to the exact solution which is why, in the end, it does not give

any better results than the 410 element. The NASTRAN evaluation study [14]

gives a very comprehensive comparison between the NASTRAN element TRSHL and a

number of other elements including the Ahmad isoparametric. Comparing the

STAGSC-l results with this data it is obvious that the STAGSC-l elements

perform considerably better than TRSHL but not so well as MSC/NASTRAN's QUAD 4

element.

In summary, it can be stated that the 410 series performs acceptably for a

curved shell problem hearing in mind that the element formulation is for a

flat platp.

6.1.? FLAT PLATE PROBLEM

I The failure of the 420 series elements to provide a solution to the

cylindrical roof problem made it necessary to select a different test case. A3 flat square plate, simply supported or clamped at the edges was used in the

NASTRAN evaluation study by Jones, et. al., [14] to obtain convergence data

0920B-86B:?
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for the QDPLT (quadrilateral plate) element. A purely linear solution to this

problem will only provide data for the bending behavior of an element.

herefore, in order to test both bending and membrane convergence, the large

deflection problem must he solved. Linear solutions are available in Roark

[?71 for the flat plate subject to a wide variety of loads and boundary

conditions. However, for the nonlinear case the only solutions provided dre

for uniform presmjre loadinq with various edge conditions. The case relectd

therefore was the square plate, clamped along all four edges and subject to

uniform pressure loading. The linear solution to this problem in terms of the

deflection at the mid-point of the plate is

i4

WA = 0.01376 t- where A denotes the plate center.

Figure 6.4 shows the geometry of the plate. For this geometry and a pressure

of 12500 p.s.i., the maximum deflection is given by

WA = 0.2752 inches

The nonlinear solution is presented as a function of the applied pressure and

is shown in Figure 6.5 in dimensionless form. For a pressure of 12500 p.s.i.

the maximum deflection is

WA = 0.1380 inches

which is only 50% of the linear deflection. The 410 and 411 elements yield

identical solutions for the linear case as do 420 and 422. The reason is, of

course, that the bending shape functions are the same for the different

element types in the two series. Therefore, it was only necessary to compare

410 and 420 for the linear case. Figure 6.6 shows the convergence behavior in

terms of the maximum displacement for 410 and 420. It is noteworthy that the

presence of the mid-side rotations gives rise to a poorer result for the

coarsest mesh. Table 6.1 shows the percent error as a function of the number

of elements.

82

0920B-P6B:2
(S3034) 4

.4.



I

Thus, for bending deformations, the 420 series are clearly superior to the 410

series so far as accuracy and rate of convergence is concerned. However,

these results are of limited significance in the wider context of nonlinear

shell analysis. The nonlinear case brings in the effect of membrane

deformation as well as bending and therefore gives a more complete picture of

the overall convergence of the elements. Figure 6.7 shows how the nonlinear

solutions, obtained using the 410 element (4 elements and 25 elements),

compare with the theoretical. Figure 6.8 shows the relative convergence

behavior for 410, 411, 420 and 422. Table 6.2 shows the percent errors as a

function of mesh size. The 411 element appears to give the best accuracy for

the coarsest mesh in the nonlinear case. This appears somewhat anomalous in

comparison with the rest of the elements except for the fact that 411 is the

only one that has two independent normal rotations at each corner and thus has

an added degree of membrane shear flexibility. It is clear that in this

problem it is the refinement of the membrane shape function which is

responsible for improvements in accuracy for a given mesh size.

However, in comparing the convergence rates of different elements, we must

beware of drawing premature conclusions particularly for nonlinear analysis.

The ultimate goal of the structural analyst is to produce the best accuracy

commensurate with the cost of performing the analysis. The cost for the

nonlinear analysis is not only a function of the element complexity but also

of the way in which the element affects the performance of the solution

algorithm. This is particularly relevant for STAGSC-l because of the

automatic adjustment of load step size and refactoring operations. Table 6.3

provides details of the 17 nonlinear analyses performed for element

convergence. It is clear from the table that much depends on whether or not

jthe step size is halved durinQ the analysis. For example, Run No. 12 using 25

410 elements took less CPU time than Run 9 using only 9 elements. The reason

was that with the more refined mesh, solution convergence criteria were

satisfied without cutting back the load step. A similar situation occurred

for Runs 19 and 20 (element 420) except that Run 19 did not need to refactor

* whereas Run 20 did.
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Thus, if the total CPU time for each run is plotted against solution accuracy

(Fiqure 6.9), a somewhat different view of convergence (in the broader sense)

is obtained. Element 411 appears to he aqain the best performer, except that

for hiqher accuracy (<3% error) a finer mesh using element 410 provides an

equally cost-effective solution. Element 420 in this context appears to be

the least cost-effectivP element.

6.1.3 ELEMENT EIGENVALIIE ANALYSIS

The specification of assumed displacement fields in terms of polynomial shape

functions is the almost universal method for obtaining the stiffness

characteristics of finite elements. A subtle disadvantage of this approach is

that the fundamental deformational capability of the element becomes almost

totally obscured by the algebraic complexity of the functions. The so-called

"natural-mode" method of formulating finite elements was developed by Argyris

[28] and his co-workers prior to 1965 but did not achieve widespread use as

the problem of defining such modes for more complex elements far out-weighed

the advantages. However, these prescribed natural modes of deformation are

desiqned to be orthogonal and are therefore eigenvectors of the resultant

stiffness matrix. Therefore, if an eigenmode analysis of any stiffness matrix

(however it may be generated) is performed, the so-called natural modes are

obtained which are often physically much more revealing than the oriainal

shape functions. Moreover, as discussed by Gallaqher [29], the complete set

of stiffness matrix eiqenvectors must include the set of rigid body modes

which are identified by zero eiqenvalues. Since there can be, at most, six

rigid body modes any number of zero eiqenvalues greater than six indicates the

presence of undesired kinematic degrees of freedom. This approach is

therefore also a test for anomalous behavior; this could be inherent in the

form of the shape functions which have been assumed, or could be a result of

the numerical procedures used for integrating the terms in the stiffness

matrix.

Two possible methods of performinq the eigenvalue analysis can be envisaged.

A direct dynamic Piqnsolmition could, in principle, be obtained for a single

element by invoking the appropriate option in SIAGSC-l. There are two

objections to this approach, nno theoretical and the other practical. The

practical difficulty is dOcisivp ire STAGSC-l is not able to perform any

n9?op-P8:? 7
(S3034) 6
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I

analysis on a system which is totally unsupported. Thus, "free-free" modes of

vibration cannot be determined because the solution procedure fails in matrix

decomposition. Therefore, the complete set of modes, which must include rigid

body modes, cannot be determined in this way. The second objection is, of

course, that the vibration mode analysis will obtain the eigensolution for the

dynamical matrix and not the stiffness matrix per se.

The second approach (the method adopted for this work) is to obtain the actual

stiffness generated by the program for a single element and perform a separate
eigenmode analysis on this matrix. STAGSC-l saves the element stiffness

matrix on TAPE23 for a restart or on TAPE8 for an eigenvalue analysis based on

a nonlinear stress state (either buckling or vibrations). Since the data on
TAPFR is written as a straightforward unformatted write operation, the latter
method was chosen. The eigensolution for the stiffness matrix was then

obtained by using a specially written program ELMOD (Appendix). This program
reads in the stiffness matrix (written as a lower triangle) and also a

solution vector. After the eigenvalues and eigenvectors have been determined,
the program computes the strain energy associated with each mode corresponding

to the given solution vector. The Appendix provides a description of ELMOD

and a listing.

The usefulness of this method depends entirely on the ability to associate the

individual terms of the eigenvectors with the corresponding degrees of freedom
for the element. This proved to be possible only for the 410 element. All

other elements were formed with some degrees of freedom condensed out and the
identification of the remaining freedoms could not be performed.

Ten separate load cases were devised for the single element model. Figure
6.10 shows the model geometry and the support conditions (which are sufficient

only to eliminate rigid body freedoms). The load cases were chosen so as to
excite as many different modes of deformation as possible and also to use as
many load options as possible. Figure 6.11 shows the nodal equilibrium forces
printed out by STAGSC-l for each of the cases. Thus, Cases 1 and 2 are

identical in distribution (not in magnitude) and have displacement solutions

which differ only by a common factor. Cases 3 and 4 are similar but Case 4

(distributed edge load) produces self equilibrating moments about the normal

0920B-86B:2
(S3034) 7

85

. 7



at the two nodes on the loaded edge. Cases 6 and 7 which are comparable cases

(but with the loading in the Y-direction) do not produce moments about the

normal. However, as is clear from Figure 6.11, the actual pattern of loads

and reactions is different because of the support conditions. Cases 6 and 7

yield identical displacement solutions. Case 5 (uniform tangential shear

loading) is very similar to 6 and 7 with respect to nodal force

distributions. The displacements in the X-direction are identical with 6 & 7

with only minor (but real) differences in the Y-direction. Cases 8 and 9

(concentrated corner moment) also produce identical displacement patterns.

Case 10, with a single concentrated moment about the normal at the free corner

produced zero displacements and nodal equilibrium forces; the obvious

conclusion for Case 10 is that STAGSC-l calculates no contributions to the

force vector from moment components about the normal.

In order to obtain the modal distribution of strain energy, the stiffness

eigenmodes were determined. Figures 6.12-a through 6.12-c provide qualitative

sketches of the mode shapes calculated. A total of 24 modes were obtained

corresponding to the 24 degrees of freedom of the stiffness matrix. The

eigenvalues and mode descriptions are contained in Table 6.4. The most

striking observation from Table 6.4 is that there are seven zero eigenvalue

modes. Since there can be only six genuine rigid body modes, the existence of

an extra mode indicates the presence of some spurious kinematic freedom. This

is presumably associated with the inclusion of the rotations about the surface

normal at the corners as separate degrees of freedom. Inspection of the

eigenvectors shows that for the zero eigenvalue modes, the displacements and

rotations are all mutually consistent (and also with all six rigid body

freedoms), with the exception of the rotations about the normal. These are an

independent set and hence explain the presence of the seventh zero mode. This

observation presents difficulties in explaining the declared purpose of the

normal rotation [2], which is to provide for cubic variation of in-plane

displacements along an edge, i.e., if the rotations are uncoupled in the rigid

body modes, how are they coupled to the deformation behavior?

Setting aside this dilemma for the time being, attention will be directed to

the deformation modes. The lowest eigenvalue (least stiff) deformation mode

(Mode 8) is, somewhat surprisingly, purely membrane. The eigenvector shows
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that the dominant freedoms are the corner normal rotations. There is a

companion mode (21) in which the translations are the dominant freedoms and

for which there is therefore much greater overall stretching. Mode 9 is the

essential linear twisting mode. Modes 10 through 13 represent various types

of pure bending behavior with Mode 10 being the anticlastic bending mode and

Mode 13 spherical bending. Modes 14 and 15 are a combination of bending and

twisting. Modes 16 through 22 are various membrane modes which include pure

in-plane shear (18) and pure membrane dilation (22). The two remaining modes

are doubly antisymmetric diagonal bending and twisting modes. In Mode 23 the

diagonals remain straight, while Mode 24 has anticlastic bending along the

diagonals.

Table 6.5 shows the results of the modal energy computations. As discussed

previously, there are, in reality, only six load cases which provide

distinctly different displacement solution vectors; these are Cases 1, 3, 4, 6

and 8.

Case 1, as might be expected, deforms the element almost entirely into a

linear twist mode (9); the only other mode involved is 24 but its energy

content is so low that it could be attributed to numerical round-off. Load

Cases 3, 4, 5 and 6, being all in-plane loadings, excite only membrane modes.

The most striking observation is that most of the energy is stored by Modes 8

or 16 with the other modes participating to provide the asymmetric response.

Case 4 is outstanding because, although the loading is in the same direction

as Case 3, Mode 8 does not participate at all. This may be related to the

fact that Case 4 is the only one in which non-zero equilibrium moments are

printed out for the normal rotation directions. The response for load Case 8

is mainly provided by Modes 9, 10 and 11.

None of the load cases produced any significant response in the diagonal

bending plus twist modes (23 & 24) although it is obvious that a superposition

of load Cases 8 and 9 ought to produce a response in which Mode 23

j participates more strongly. Accordingly, the solution vectors for Cases 8 and

9 were superposed and the energy distribution calulated. As expected, Mode 23

now provides the dominant response.
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It is clear that the only questionable result of the eigenvalue analysis is

the existence of the seventh zero eiqenvalue mode for element 410. Eigenvalue

analyses were performed also for elements 411, 420 and 42? despite the fact

that no modal decomposition of the strain energy could be performed. None of

these elements had more than six zero eigenvalue modes. The developers

recommend that when element 410 is used at least one normal rotation degree of

freedom should be constrained.

6.2 EIGENSOLUTION PERFORMANCE

Three particular aspects of performance were chosen for investigation. These

were:

A. ability of the algorithm to discriminate between closely-spaced or

multiple eigenvalues, and the orthonormality of the corresponding

eigenmodes;

B. degradation of accuracy with increasing mode number; and

C. convergence of the solution

Three models, of increasing complexity, were developed to examine these

questions. The first was a simple cantilever beam in three dimensions. For

equal, or slightly different, principle moments of inertia of the

cross-section, multiple or closely-spaced eigenvalues can be easily obtained.

The second problem was a cantilever flat plate which is also well documented

and therefore provides a further check on accuracy and convergence. Thirdly,

a short cylinder with simply supported ends was chosen as an example of a

shell structure with closely spaced modes at the lower frequencies.

6.2.1 3-D CANTILEVER BEAM

Figure 6.13 shows the geometry and finite element idealization of the beam.

Ten beam elements (Element 210) were used along the length. Element 210 has

cubic interpolation for transverse displacement and linear interpolation for

axial displacements and twist. The exact solution for flexural frequencies

was obtained from Reference 30 and is as follows:
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f = (L 2 [El/pAL4]1 /2  6.1

3 where

nL is obtained as the solution ofI
cosh (nL) cos (nL) + 1 = 0 6.2

and

p = density in mass units

5A = area of cross-section

The STAGSC-l analysis consisted of five separate runs. In all cases only

lateral motion was permitted. The first two analyses confined vibrations to

the XZ plane. The next three permitted motion in both planes but varied the

ratio of the principal moments of inertia in order to observe the performance

of the algorithim in the presence of closely spaced or multiple frequencies.

The only difference between the first two analyses was that five modes were

determined in the first case and ten modes in the second. Table 6.6 contains

the frequency results for vibrations in the XZ plane.

Comparison of the STAGSC-l frequencies with the exact results shows that the

accuracy begins to degrade significantly after 3 or 4 modes. However, this is

probably more a consequence of the mesh than anything else, since there are

only 20 active deqrees of freedom. The results also indicated that specifyinq

5 or 10 modes for determination did not affect the accuracy with which they

were obtained nor did it affect the number of iterations for convergence (6 in

each case).

For the cases of closely spaced and multiple modes, results are presented for

the runs made with 1% difference in cross-section dimensions and equal

dimensions. Frequencies are tabulated in Table 6.7 for the first six modes in

each case.

The determination of the modes and frequencies was performed with accuracy

equal to the case where they were not closely spaced. The only noticeable

difference is in the solutions for the eigenvectors, where the modes become a
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mixture of components in the XZ and XY planes. However, in the case where

there is only 1% difference in the frequency pairs, the dominance of one mode

over the companion is extremely strong (1/107). For equal frequencies, this

dominance is much less but in this situation no dominance is really to be

expected. Convergence of the iterative procedure was the same in all cases.

The comparison with the exact results indicated that STAGSC-l underestimated

all frequencies. The exact solution is based on classical beam theory with no

allowance for shear deformation or rotary inertia. These effects are not
included in the beam elements so it must be concluded that the lowering of the

frequency is associated with the element mass matrix (which is lumped).*

6.2.2 FLAT PLATE CANTILEVER

This problem is well documented, since theoretical and finite element

solutions to this problem are available in References 31 (page 550) and 26

(Volume E, page E4, 1-4) and it is therefore well documented. The problem

description is contained in Figure 6.14. Table 6.8 shows a comparison between

the STAGSC-l model, using element 410, the MARC solution [26] using MARC

element 4, the Zienkiewicz solution [31] using a non-conforming triangular

element and the classical solution. In each case the mesh consists of two

square regions which gives two elements for STAGSC-l and MARC and four

triangles for the Zienkiewicz solutions.

For two elements, the STAGSC-I results are very poor. This is not,

apparently, a failure of the eigensolver since much better solutions were

obtained using more elements.

Figure 6.15 shows the convergence of the first mode frequency for STAGSC-l as

a function of the number of elements. For the purposes of comparison the

Zinkiewicz (triangle) solution is plotted as a 2-element mesh because the same

basic rectangular grid is used.

*Convergence should be from above. The fact that the frequencies are under-

estimated indicates a failure to satisfy some equations of mechanics. It
may also be the result of numerical integration procedures for stiffness
formation.
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I
The eigenvalue solution (4 frequencies requested) required 4 iterations for

the 2 element model, 6 iterations for 8 elements and 7 iterations for 32

elements. Thus, the number of iterations required was not strongly dependent

on the size of the model.I
6.2.3 SIMPLY SUPPORTED CYLINDER

An analytical solution for the free vibrations of a thin-walled cylinder was

first documented by Baron & Bleich [34] and their solutions were utilized by

other workers [32, 33] for comparison with a finite element solution and also

in supersonic flutter calculations. A characteristic of the modal behavior of

a thin cylinder is that the lowest frequency is obtained for an axial

wavelength of 2 diameters (m = 1) and a circumferential wavelength of 1/8

diameters (i.e., 8 circumferential waves; n = 8). For numbers of

circumferential waves both greater or less than 8, the frequencies are

higher. Figure 6.16 shows the geometry selected for the STAGSC-I analysis,

which is the same as that used by Greene, et. al., [32] and Voss [33]. Since

the length was chosen to be one diameter and simply supported boundary

conditions were imposed at each end, solutions can be obtained for axial

wavelengths which are equal to 2D/m, where m is the number of axial half waves

between the ends and D is the diameter. Figure 6.17 shows how the frequencies

are distributed with respect to the number of full circumferential waves n.
The lowest frequency corresponds to a single axial half wave (m = 1), and

eight full circumferential waves (n = 8). Attention was confined to modes

where m = 1 and therefore it was possible to impose symmetry boundary

conditions at the mid axial section. Some initial runs were made in order to

establish a reasonable mesh for the analysis. Greene, et. al., [32] analysed

thp problem using a mesh based on a quarter wave model, i.e., the model

spanned 11 1/40 circumferentially and half the length, which is 1/4 wave in

both directions for the fundamental mode (m = 1, n = 8, Figure 6.13). For the

present study, two 1/4 wave meshes were set up, one with a 4 x 4 mesh (16

elements) and one with a 5 x 5 mesh. The fundamental frequencies obtained are

I given in Table 6.9. These results indicate a well-converged solution, at

least for the first few modes. However, the 11 1/40 model is only suitable

* for the fundamental (or appropriate multiples) because of the boundary

conditions imposed on the axial edges. In order to establish a mesh suitable

for higher modes, a 1/8 cylinder model was set up.
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Referring to Figure 6.16, the 1/8 model spanned the region ABCD; symmetric

boundary conditions were imposed on edges AB, BC and AD. Table 6.10 presents

results for four different meshes.

The results show that in order to capture the lowest modes accurately, at

least 16 circumferential elements were required (i.e., 2 per quarter wave) and

4 axial (4 per quarter wave).

The larger number per quarter wave in the axial direction is probably due to

the poor aspect ratio obtained with the 16 x 2 mesh. This seems to be

substantiated by comparing the 16 x 4 and the 16 x 8 meshes. Figure 6.18

shows the corresponding mode shapes and emphasizes the fact that the best

accuracy is obtained for Mode 5 (n = 6) where the best definition of the mode

shape is obtained. Thus, in order to develop reasonable accuracy for a full

circumference model, it became clear that 64 circumferential elements would be

necessary and at least 2 axial elements for a half cylinder model (using

symmetry about the mid-length).

Using the 1/2 cylinder model, some apparently anomalous results were

obtained. The first two modes for the cylinder correspond to n = 8 and n = 7

circumferential waves respectively. STAGSC-l was executed with the following

parameters specified

NEIG = 4, SHIFT = EIGA = EIGB = 0

which instructs the program to determine the four lowest eigenvalues using a

zero frequency shift. The frequencies obtained are shown in Table 6.11.

The modes that were isolated by the program consisted of two pairs each with 8

and 7 circumferential waves respectively, but with slightly different

frequencies. Such pairs do not exist according to the classical analysis.

Figure 6.19 through 6.22 show the mode shapes in terms of the normal

displacements plotted around the circumference. It seems clear that modes I

and 3 (as numbered by STAGSC-I) correspond to the true modes with 8 and 7

circumferential waves whereas modes 2 and 4 are anomalous due to their

irregularity in circumferential distribution. The eigensolver obtained

converged eigenvalues after a total of 16 iterations, having automatically
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selected a frequency shift of 78.53 Hz after 8 iterations. Thus, the

algorithm was quite capable of discrimination between the closely-spaced

I frequencies in each pair. It seems likely, therefore, that the anomalous

modes are a result of the finite element discretization. Since the element

type and mesh size are the same as for the 1/8 cylinder model (which did not

give rise to these paired modes) the most likely source of the anomaly is the

juncture of the cylindrical shell unit. This, in effect, introduces an axial

"oseam" in the structure which probably results in some slight asymmetry.

If this is indeed the situation, then it could be argued that the eigensolver

is highly sensitive and discriminatory in identifying modes which are so

closely similar. On the other hand, the more practical conclusion is that

such powers of discrimination may be a considerable nuisance where, in an

unknown situation, the separation of real and spurious modes may not be so

easy.

In order to obtain further modes, use was made of the feature whereby the

frequencies in the vicinity of a given range can be determined (EIGA, EIGB).

The complete set of results is presented in Table 6.12.

6.2.4 CONCLUSIONS

The evaluation exercises performed permit some overall conclusions to be drawn

with respect to the performance of the eigensolver. Three aspects were

investigated and these can be summarized as follows:

A. Discrimination between closely spaced or multiple modes is very good

for problems of widely varying complexity.

B. Degradation of accuracy with increasing mode number was observed, but

the underlying cause was probably associated more with the adequacy

of the mesh and the elements themselves, rather than the eigensolver.I
C. Solution convergence behavior for the problems investigated was

I satisfactory.
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Overall conclusions based on this study are therefore that the eigensolver in

STAGSC-l is highly discriminatory, accurate and efficient. In fact, the

quality of the solutions obtained was probably mostly dependent on the

elements themselves rather than the eigensolver.

6.3 TRANSIENT INTEGRATION PERFORMANCE

STAGSC-l is particularly well equipped with transient integration capability

having one explicit and four implicit operators. The operators themselves are

described in Section 4.8, and it is the purpose of this section to investigate

their relative performance. Much has been written about the accuracy,

stability, damping and so on of the multitude of numerical operators which

have been developed for the integration of ordinary differential equations.

Most of the research, however, has dealt with their application to linear

problems, presumably because the mathematical proofs involved can be more

readily derived. From the practical point of view, use of these algorithms in

a program such as STAGSC-l, more often than not, will be for the integration

of a non-linear set of equations. The main thrust of the present study was

therefore directed towards studying the performance of the operators when

applied to a non-linear problem. The properties which are relevant are the

same as for a linear problem, i.e., accuracy, stability, artificial damping

and frequency distortion (dispersion).

Two problems were selected for the investigation. The first was a benchmark

to establish the general validity of the transient integration in STAGSC-l,

and was chosen to be the linear elastic response of a thin-cantilever flat

plate subjected to a triangular pressure pulse. This example is a

demonstration problem used for the MARC program [26] and a comparison solution
was therefore available. The second problem was the non-linear response of a

circular ring segment subjected to an impulsive pressure loading. The

solution to this problem has been reported by Stricklin, et. al., [37] with

comparisons between analysis and experiment. All of the candidate integration

operators were tested using this problem.
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6.3.1 FLAT PLATE MODEL

The basic model and dimensions were the same as were used in the work on the

eigensolver performance and details may be found in Figure 6.14. The pressure

time history is shown in Figure 6.23 and is a triangular shaped pulse with a

peak value of 100 lb/in 2 applied uniformly over the whole plate. The total

duration of the pulse was 0.04 milliseconds.

This problem was analyzed using the explicit and the implicit trapezoidal

methods (Newmark - a) in STAGSC-l. The model used element 410 in a mesh

with four elements lengthwise and two across the width. The bench mark

comparison was obtained using the MARC program. The MARC model was based on

element 4 and a mesh consisting of two elements lengthwise.

The explicit method requires the selection of a time step which is below the

stability limit. This may be estimated in several different ways which may be

summarized as follows:

(a) a < 2
- max

where wmax is the highest circular frequency which is inherent in the

finite element model.

-I 2(b) at < Min {[ 2 s 2 -/ 2 + 6.3

(b + l-a 'hc Act A

where

C2  = E/p (1-v 2);

2 = G/p(Cs
S

Ao (< aa) are grid spacings
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h interval in finite difference formulation; in this case the
assumption is made that ao, 2h

(see [3], paqe 6-33)

at < - 6.4
-C

where

C. E/p (1-v2 ) speed of sound

Usinq the material properties for the flat plate model and the spacing

au = Ai = 0.5 inch (4 x 2 mesh) the following values of at were obtained

and are tabulated below;

The table shows that a at of less than 2 x 10-6 seconds is required for a

stable solution. Accordingly a time step of 1 x 10-6 seconds was chosen but

the solution diverged after 6 time steps. A tenfold reduction in time step

size to 0.1 x 10-6 seconds permitted the solution to progress further but

divergence still occurred after 13 time steps. The most probable source of

this discrepancy in the assumption used in the critical time step formula

6.3. For high-order finite elements, the values of h (finite difference

interval) or au are difficult to estimate, and these estimates can be

seriously affected by inconsistent mass-lumping combined with high-order

deformation patterns. As pointed out by Krieg and Key [35], explicit

operators do not work effectively with high-order elements for this reason.

However, the fact remained that the time step size clearly had to be much

smaller, probably by at least an order of magnitude, in order that a stable

solution be obtained. The effort was therefore discontinued at this point and

attention directed towards the implicit trapezoidal operator.

The MARC solution referred to earlier had used a time step of 20 x 10
-6

seconds. Accordingly, for the STAGSC-I solution values of 10 x 10-6

seconds, 20 x 10-6 seconds and 100 x 10-6 seconds were used and the

solutions compared with the MARC response. Solutions were ohtained out to a

total time of 1000 x 10-6 seconds. Figures 6.24 and 6.25 show the tip
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l displacement and tip velocity as a function of time for the STAGSC-l and MARC

solutions. First, there was no significant difference in the STAGSC-l tip

I displacement time histories for at = 10 x 10 6 seconds and at = 20 x

10-6 seconds so results are presented only for at = 10 x 10-6 seconds.

j Figure 6.24 shows that there is excellent agreement between the MARC and

STAGSC-l solutions. At first sight there appear to be some dispersive affects

in the STAGSC-l solution as compared with MARC since the fundamental response

frequency is about 14% less than the MARC result. However, it is more likely

that the "dispersion" is merely underprediction of the frequencies by the

STAGSC-l model (Element 410) as previously demonstrated. The peak-to-peak

amplitude of the STAGSC-l solution is about the same as that predicted by

MARC. The solution obtained using a time step of 100 x 10-6 seconds is

clearly rather coarse and does not give any resolution of the higher frequency

components as might be expected. However, the solution appeared to be on the

point of diverging at the final time step. Figure 6.25 shows how the

responses in terms of tip velocity compare. The previously observed frequency

distortion is rather more pronounced, particularly with regard to the higher

frequency components. Thus, it may be inferred from this benchmark case that

correct and reasonably accurate results can be obtained using the STAGSC-l

trapezoidal operator for a linear response analysis. The failure to do so

with the explicit method could probably be resolved by using a smaller time

step, but this was not demonstrated.

6.3.2 IMPULSIVELY LOADED RING

Stricklin, et. al., [37] performed a large deflection elastic-plastic

transient dynamic analysis of an impulsively loaded ring using the program

DYNAPLAS. The ring problem was initially posed and analyzed by Wu & Witmer

[38] who compared their results with experimental data. The geometry of the

ring is shown in Figure 6.26. The initial conditions for the problem are zero

displacements and a radially inward initial velocity of 4862 inch/second

imposed over a central sector of 1200. The STAGSC-l finite element model

jassumed symmetry about the plane through the middle of the ring (e = 00) and

utilized 21 equal elements between e = 00 and e = 157.50. The element

used was element 410.
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The original intent was to perform full elastic-plastic large deflection

transient analyses for each operator and for various time steps. However,

difficulties were encountered with the plasticity solution and this

comprehensive approach was discarded in favor of an elastic large displacement

solution. This was considered to be sufficiently nonlinear to test the
integration operators effectively. Table 6.14 gives a summary of the

individual analyses performed.

Runs 10 through 11 were all full non-linear elastic-plastic analyses using the

Park integration operator.

A. Park Operator

A time step of 2 x 10-6 seconds was chosen for the first run on the

assumption that this would be sufficiently small to permit accurate
handling of the plasticity. The results indicated that the first 40

steps required plastic sub-iterations at each step but thereafter the
need became only occasional. Solution convergence was obtained with

only a single iteration per time step after the first 100 steps. The

solution reached a total time of 620 x 10-6 seconds when the

execution time limit was reached. Accordingly, the analysis was
repeated using the automatic time step control with an initial step

of 2 x 10-6 seconds imposed for the first 100 steps. Subsequently,
the step was doubled twice during the next 16 steps. A third
doubling was attempted but the solution failed because the

determinant changed sign. It appears that in the automatic mode
STAGSC-l at present is able only to increase the time step which is

obviously unsatisfactory for non-linear analysis in general where the

changing character of the nonlinearities as the solution progresses

may require successive increases or decreases in the step size.

For the third run (Run 12), a fixed step of 2 x 10-6 seconds was

used and a restart file (TAPE22) was saved. The solution was

obtained up to a time of 1002 x 10-6 seconds.
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The fourth run was an attempted restart which failed giving the

message; "Restart tape does not contain plasticity data .,"

notwithstanding the fact that the previous run generating the file

confirmed that the plasticity data had been written to tape. At this

point, the solution was examined in detail and compared with the

published results. Figure 6.27 shows the time history of the

deflection at the center of the ring up to 0.001 seconds. The

solution compares reasonably well with the DYNAPLAS solution [37] but

shows a qrowing difference. The circumferential strain history

(Fiqure 6.28) at the center of the ring (outer surface) also shows

good agreement. Perhaps the most encouraging comparison is with the

experimental data presented by Wu and Witmer [38]. The deformed

shape at 0.0008 seconds as calculated by STAGSC-l is compared with

the experimental results at 0.00079 seconds in Figure 6.29.

Nevertheless, it was concluded that for times greater than this the

solution was flawed. Figure 6.30 compares the distribution of

bending rotation at 0.001 seconds for STAGSC-l and DYNAPLAS.

STAGSC-l shows large discontinuities in rotation at three locations

(u = 52.50, 750 and 1500) which clearly are unacceptable. This

appeared to be traceable to the plasticity solution since the

stresses did not lie on the stress-strain curve. Since the emphasis

was intended to be on the integration operators, it was decided at

this point to avoid the plasticity problems and to perform the

evaluation using a purely elastic large displacement model. Thus,

runs 14 through 25 (Table 6.14) were confined to the elastic regime.

Using the same time step as for the plasticity solution, response was

obtained up to the maximum time specified of 0.002 seconds. The

solution was considered to be quite accurate since only one or two

iterations per time step were required. For the next run, the time

step was increased by a factor of ten (20 x 10-6 seconds). This

produced an interesting result; after the first step, the time

increment was automatically halved and the stiffness matrix

refactored, in contrast with run 11 where automatic time step control

was used and the time step was not reduced when difficulties were

encountered. Since a small time limit had been imposed, the run was

repeated with a time step of 10 x 10-6 seconds. This solution
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refactored periodically and required from 2 to 8 iterations per time

step. Figure 6.31 shows the responses obtained for the two time

steps. Increasing the time step eliminated some of the high

frequencies and increased the dispersion (about 5%).

B. Trapezoidal Operator

Time steps of 2 x 10- 6 seconds and 10 x 10-6 seconds were again

chosen. Figure 6.32 shows the responses obtained. There appears to

be very little to distinguish the two solutions; dispersion and

damping are both unaffected by increasing the time step. Comparison

with Figure 6.31 shows that the results are almost identical with

those obtained using the Park operator.

C. Gear 2nd and 3rd Order Operators

The Gear 2nd order operator shows about an 8.4% dispersive increase

in the fundamental period when the time step is increased (Figure

6.30). In addition, the damping of the higher frequencies is very

marked in comparison with the other operators. The Gear 3rd order

operator became unstable at about .00035 sec. using the smaller time

step. No further runs were attempted.

D. Explicit Operator

Time steps of 1 x 10
-6 seconds, 5 x 10

-6 seconds and 1 x lO
-7

seconds were attempted. The two larger steps both led to divergence

after a small number of steps (Figure 33). The run using a step of 1

x 10-7 seconds did not diverge but completed only 1710 steps (t 
=

.00017 seconds) when the time limit for the run was reached. Since

this was clearly extremely inefficient compared with the other

operators, no further runs were attempted. The details of the

computer run times and resource usage are presented in Table 6.15.

Examination of the execution times presented in Table 6.12 shows that for the

implicit operators there are no obvious grounds for selecting one over another
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on the basis of computational efficiency. Comparison of the Park and

trapezoidal methods (Runs 14 and 18) shows that when the numbers of iterations

are the same and there is no refactoring then the execution times and computer

resource usage are also the same. Where differences do occur (e.g.,

jtrapezoidal and Gear's 2nd Order - Runs 17 and 19) they can be ascribed to

more refactoring in the case of the one method (trapezoidal) compared with the

other. Other things being equal, it may be said that this also reflects

properties of the integration operator, but such a conclusion would need to be

more firmly based than is possible with the present evidence. Such effects as

problem dependence would need to be investigated.

Perhaps the most surprising result is the very poor performance of the

explicit method which should be far superior on the basis of resources used

per time step. This is clearly not the case given the present problem and the

low value of the initial time step (0.1 x 10-6 seconds < at cr < 0.5 x

10-6 seconds) makes it hopelessly uneconomical. For a large problem

however, where the cost of refactoring will be much greater, the explicit

method should become competitive.

6.3.3 CONCLUSIONS

Overall, the STAGSC-l integration operators performed satisfactorily for both

linear and nonlinear transient response problems. For the relatively small

test problems the explicit method did not show to advantage because the size

of the critical time step was so small and the number of steps became

excessive.

Of the implicit methods, the trapezoidal operator was the most effective and

showed the smallest dispersion when the time step was increased. The Gear 2nd

and 3rd order operators were the least effective, the 3rd order method

becominq unstable even for the smaller time step.

j6.4 NONLINFAR COLLAPSF ANALYSIS

3 This section presents results obtained from a number of elastic nonlinear

collapse analyses of point loaded cylindrical shells. The analyses were
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performed more or less on a production basis as part of an investigation of
the buckling of a nuclear reactor containment vessel due to localized loads,
and not as part of the STAGSC-1 evaluation per se. However, because the

analyses are for the less frequently considered case of displacement-control,

and because of experience gained with certain input strategy parameters, it is

fruitful to discuss these aspects of the analyses as they pertain to the

STAGSC-l evaluation. In this respect, it should be pointed out that the

analyses might very well have been performed differently, and certainly for
simpler and more economical problems, if the objective at the outset had been

an evaluation of the nonlinear collapse capability of STAGSC-l.

The problem of interest for the containment vessel buckling investigation is
collapse of the so-called "poked cylinder", which is a cylindrical shell
subjected to an inward-directed normal point force applied at midlength. Two

related and more standard problems were first run on STAGSC-I to gain

familiarity with the program, and to provide check cases. These problems are

the point loaded venetian blind and the pinched cylinder. Dimensions and
material properties for the three elastic shell problems are given in Table

6.16 along with the STAGSC-l predictions of the collapse loads. Table 6.16

also serves to define some of the notation.

6.4.1 ANALYSIS CONSIDERATIONS

Either displacement or load can be specified as the controlled variable in

STAGSC-l input. For reasons of economy, and to obtain the post-collapse

behavior, displacement-controlled analyses were performed for each of the
* three shell problems. Specifically, the radial displacement w under the

0
point load P is specified in steps, and the corresponding value of P required

to impose the specified displacement is determined from a printout of
"equilibrium forces." The nonlinear collapse load is the value of the load at
the maximum point (limit point, dP/dwo=O) of the load-displacement(P-wo0

curve obtained from the analysis. This load, which is also called the
snap-through load or nonlinear buckling load in the literature, should not be

confused with the bifurcation buckling load obtained from an eigenvalue type

of analysis. For comparison, a load-controlled collapse analysis was also

performed for one of the problems. In this case, the collapse load is taken
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to be the value of P for which the finite element computations failed to

converge within the specified convergence criterion (DELX), specified

permissible number of cuts in the load step (NCUT), and the number of times

the stiffness matrix can be refactored (NEWT). Because of symmetry

j conditions, each shell problem is analyzed as a cylindrical panel whose axial

length is half the actual length of the shell, and whose circumferential angle

is half the actual opening angle of the venetian blind, and 90° and 1800 for

the pinched and poked cylinders, respectively. Classical simple support

(diaphragm) boundary conditions are imposed on the curved edges of all three

panels, and free edge conditions are specified on the remaining straight side

of the venetian blind panel. The quadrilateral plate element 411 with 2x2

Gaussian integration points + is used in the analyses. Table 6.17 gives the

number of mesh points along with computer costs and other details of the

analyses.

Analyses of the venetian blind and pinched cylinder were performed in a

straightforward manner, with no decisions required for selection of the

strategy parameters beyond initial specification of NCUT and NEWT.

Specifically, it was not necessary to tighten the convergence criterion DELX

from its default value of 10-3, or to force refactoring at each of the

higher load steps. In contrast, the poked cylinder analysis required that

greater attention be paid to these strategy parameters, with DELX being

reduced from 10-3 to l0-4 and l0- , and with refactoring forced at

consecutive higher load steps (see Table 6.17), as is discussed more

completely later.

6.4.2 VENETIAN BLIND & PINCHED CYLINDER RESULTS

A. Comparison With Previous Solutions

Table 6.18 shows that linear STAGSC-l results appropriate to the

meshes of Table 6.17 agree to within 10% with previous solutions

[41,42] for woEt/P, a dimensionless flexibility coefficient. Use

+Use of 2x2 integration points was recommended by the developers of STAGSC-l.
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of a finer mesh is seen to reduce the discrepancy in the pinched

cylinder results from 10 to 2%. For reasons of economy, the finer

mesh was not used in the nonlinear collapse analysis of the pinched

cylinder.

With regard to the comparison of nonlinear results for the venetian

blind and pinched cylinder, it is noted that the present results are

based on the same meshes used in the STAGSA finite difference

analyses performed by Brogan and Almroth [41]. The above comparison

of linear results indicates that these meshes are not sufficiently

fine to render completely converged solutions for wo . Furthermore,(the rate of convergence with mesh refinement is likely to be

different for the STAGSA and STAGSC-l solutions. Consequently, the

STAGSC-l results for the venetian blind (Figure 6.34) and pinched

cylinder (Figure 6.35) agree as well as could be expected with the

STAGSA solutions, with respective collapse loads P for the

venetian blind differing by about 5% (Table 6.16). A similar

comparison of collapse loads for the pinched cylinder could not be

made because the STAGSA solution in [41] was terminated before

collapse.

B. Nonlinear Behavior of Venetian Blind

For comparison, Figure 6.34 shows load-displacement plots obtained

from both the displacement-controlled (DC) and load-controlled (LC)

analyses. The following observations and comments stem from an

examination of this figure and Tables 6.16 and 6.17:

(1) The collapse loads predicted by the DC and LC analyses agree to

three significant figures.

(2) The LC analysis required over 8 times as many steps to reach the

limit point and is 6 times as expensive up to this point.

(3) The relatively large number of load steps provides a very smooth

LC curve at all load levels. The DC curve drifts away from the
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more accurate LC curve in a local region and then properly

returns to it upon a refactorization at a later displacement

step (w = .02"). Since the same (default) value of the

convergence criterion is used in both analyses (see Table 6.17),

I and since there are fewer steps in the DC analysis, it appears

that satisfaction of convergence is so much easier in a DC

1analysis that it sometimes accepts too large a displacement
step. This apparently causes a "drift" in the DC solution from

the "true" solution (appropriate to the chosen mesh) that is

I eventually corrected by the Newton-Raphson solution procedure.

Such a local drift is generally of little consequence.1
(4) STAGSC-1 has the advantage and convenience of automatically

j reducing the load or displacement step (as permitted by NCUT)

when convergence difficulties are encountered. Thus, it is

easier for STAGSC-l to home-in on the collapse load in a LC

analysis than it is for other programs, such as MARC [26], for

example, in which input values of the load steps cannot be

reduced internally by the program to reflect the increasing

ill-conditioning of the stiffness matrix as P Pc" Such

programs generally require more restarts to obtain the collapse

load to the same degree of accuracy.

(5) The post-collapse curve obtained from the DC analysis shows that

the point loaded venetian blind is imperfection-insensitive in

the sense that collapse loads for perfect and slightly imperfect

venetian blinds are expected to differ by a small amount. Of

course, the post-collapse curve cannot be determined from a LC

analysis unless special procedures are used.

C. Nonlinear Behavior of Pinched Cylinder

The sketch of the 12x8 variable mesh given in [41] was scaled to

provide the axial and hoop intervals given in Table 6.19. The

I U corresponding STAGSC-l solution in shown by the upper

load-displacement plot of Figure 6.35. Inspection of the figure
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reveals that collapse of the pinched cylinder is not catastrophic.

The load drops off by only 1% from its value at collapse to its

minimum post-collapse value, while the corresponding displacement

increases by just 4% before stiffening behavior takes place. This

portion of the P-w plot in the vicinity of the maximum and minimum

points was routinely traced out by STAGSC-l, as was the entire P-w0

curve.

These results are useful in a general sense because this is the first time

that collapse has been predicted for a pinched cylinder. Hence collapse of

the considerably thinner poked cylinder (R/t = 638 versus 100) was seen to be

a definite possibility, and was therefore investigated. However, specific

numerical values and details of the pinched cylinder results may be inaccurate

because (1) the mesh is not fine enough to provide converged values of the

radial displacement and smooth hoop spatial variations for stresses, (2)

computed rotations (%25 ° at collapse) exceed the range of permissible values

for valid application of the theory employed in STAGSC-l, and (3) computed

stresses at collapse for this relatively thick cylinder indicate that

plasticity effects (not considered here) are significant even at points away

from the load.

6.4.3 ANALYSIS OF THE POKED CYLINDER

A. Mesh Considerations

It was decided to use the finest mesh that would not be unduly

expensive and that would not exceed the core storage limitation that

the total number of nodes mxn could not exceed 528 (on the

Westinghouse CDC7600), which was determined by trial and error from

linear runs. The chosen variable mesh with mxn = 16x32 = 512 nodes

(Table 6.19) over the half-length and half-circumference is based on

results obtained from two preliminary linear runs in which the mesh

spacinq was coarse in the axial direction(x) and fine in the hoop

direction(y) for the first run, and vice versa for the second.

Approximately five elements were then used to span the first half

wavelength of the change in axial curvature Kx in the hoop and
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axial directions obtained respectively from the first and second

runs. + The size of consecutive axial and hoop intervals was then

selected to increase geometrically by 20 and 10%, respectively, as

may be deduced from Table 6.19. Linear results appropriate to the

finer 16x32 mesh provided about the same wavelengths as those

obtained from the preliminary runs, and were found to agree well with

available series solutions, as is discussed below. Therefore, the

16x32 mesh was also thought to be adequate to describe the nonlinear

behavior of the cylinder because the inward deformation pattern under

the load spreads out with increasing load, and this results in an

increasingly greater number of nodes spanning the pattern.

B. Linear Behavior & Comparison with Previous Solutions

Figures 6.36 and 6.37 show the hoop variation of the radial

displacement w at midlength (x = 0) and the hoop bending moment M

at the axial position x = 3.5"(I/140)(L/2). The rapid decay of the

oscillatory hoop variations with increasing circumferential angle

= y/R is also typical of the STAGSC-I results for the axial

bending moment M and the axial and hoop membrane forces Nx and
X

Ny. In contrast, the axial variations of w and M decrease
Y' y

monotonically to zero at the simply supported edge (x=L/2), as is

shown in Figures 6.38 and 6.39 for the variation of w along the

loaded generator (0 = 0° ) and My along a neighboring generator

= /2'). For poked shells, note that the slow decay of w in the

axial direction is also evident from graphs given in [43] for longer

cylinders (L/R = 4), and from results for long doubly curved shells

presented in [44] where it is mentioned that displacements spread

much further in the direction of the smaller curvature than in the

direction of the larger one. Also note that the axial attenuation

lenqth for w is very large for the closely related case of a pinched

cylinder (see [45]).

+ KX is the response variable with the shortest significant wavelengths

in both directions. Therefore, results are more accurate for the more slowly
varying and lower order kinematic variable w(x,y), the radial displacement.
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The above linear results are in qualitative agreement with series

solutions given by Bijlaard [43,46,47] and Mizoguchi [48] for thicker 4

and longer cylinders. Quantitative comparisons are afforded by the

series solution presented by Kempner, Sheng, and Pohle [49] for a

range of shell geometries that spans the geometry ( R/t = 638, L/R =

.892) of the poked cylinder analyzed here. The radial loading

considered in [49] is an axial line load distributed uniformly over

just 5% of the shell length, and located symmetrically about the

midlength of the cylinder. A cylinder with such a short line load

provides a good check case for the point loaded cylinder. Tabular

results are presented in [49] for w, Mx, My, Nx and Ny at the

following points:(x,y) = (0,0), the location of the resultant load P;

(L/4,0), the "quarterlength ° point on the loaded generator midway

between P and one end of the cylinder; and (O,L/4), the corresponding

quarterlength point on the circumference through P. Resilts at the

first point for R/t = 500 and 800 and L/R = .2 and 1 were

logarithmically interpolated to provide values of the radial

displacement and the stress resultants appropriate to R/t = 638 and

L/R = .892. STAGSC-l values of the stress resultants at the

quarterlength points were determined from known values at neighboring

centroidal points by means of linear interpolation in one

direction, and extrapolation to the symmetry plane in the other

direction. The extrapolated values were obtained by passing a fourth

order polynomial with even terms (because of symmetry considerations)

through three points and by evaluating the polynomial at the origin.

The series solution [49] and STAGSC-l results for the three points

under consideration are compared in turn in the three horizontal

sections of Table 6.20. Stress resultants that are small or which

+The option to print out values of the stress resultants (or stresses

or strains) at the Gaussian integration points doesn't work. Thus, only
centroidal values are printed out.
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have very rapid spatial gradients + at the quarterlength points are

omitted from the comparison. Examination of the table reveals that

the STAGSC-I results differ from the series solution predictions by

an average of only +5.4%, with minimum and maximum deviations of +.4

and +11.1%. Furthermore, each STAGSC-l result is above the

corresponding series solution prediction, and thus properly reflects

j the more severe nature of the concentrated loading condition. In

view of the interpolation and extrapolation procedures employed to

arrive at a common basis of comparison, and because slight phase

shifts or dispersion in shape at points of moderate spatial gradients

may very well lead to percent differences on the order of those given

in the table, it seems that the agreement between the STAGSC-l and

series solutions for the two slightly different loading conditions is

about as good as can be reasonably expected. This favorable

correlation of linear results instills a sense of confidence in the

reliability of the STAGSC-l code in general, and in the adequacy of

the particular mesh selected for the poked cylinder analysis,

certainly at least with regard to the prediction of linear behavior.

C. Nonlinear Behavior and Collapse

Load-Displacement Behavior

The continuous load-displacement curve in Figure 6.40 represents the

"best" solution obtained here by refining values of the strategy

parameters in the DC analysis. Regions I and II in the figure

represent less accurate solutions that are discussed later. The

initial linear portion of the curve is seen to extend over only about

10% of the load range to collapse and over about 4% of the

corresponding displacement range. The curve then bends over rapidly

+Comparisons at points of rapid spatial gradients can result in deceivingly
large percent differences, as is exemplified by consideration of two
identical shapes that are slightly out-of-phase (shifted relative to one5 another in the coordinate direction).
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for a short range of load levels during which the initially

compressive axial and hoop membrane stresses near the load become

tensile (see Fiqure 6.41), due to local geometry changes, and remain

tensile thereafter. Figure 6.40 shows that collapse occurs at the

limit point of the curve at the following values:

Pc = 773,000 lb

w c 65.6"

or

Wc/t = 37.5

Somewhat suprisingly, the post-collapse behavior could not be

determined from the DC analysis. Strategy parameters were then

varied in a number of unsuccessful runs, each one being terminated at

the same limit point with a message that the stiffness matrix ceased

to be positive definite. It is possible that the load-displacement

curve is very steep (stiffening behavior) immediately after the limit

point, or that it has a sharp maximum there, or both. Another

possible explanation is given after consideration of spatial

variation plots.

Spatial Variations

Hoop and axial variations of w and My at collapse are displayed in

Figures 6.42 - 6.45 and are to be compared with the corresponding

spatial variations for the case of linear behavior at low load levels

(Figures 6.36 - 6.39). Comparison of Figures 6.36 and 6.42 for the

hoop variation of w at midlength shows that the inward deformation

pattern under the load spreads out with increasing load (as is easily

demonstrated by poking at a thin-walled beer can) and that the shapes

are similar otherwise. In contrast, Figures 6.43 and 6.37 reveal

that the hoop variation of My at collapse is markedly different

from that at low load levels. The jumpy behavior exhibited in Figure
6.43 near o = 200 is due to the development of a sharp hoop
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curvature, which is suggested by the displacement results of Figure

6.42, and which is shown directly in the plot of the change of

curvature, Ky., given in Figure 6.46. It is possible that the

failure to trace out the post-collapse portion of the P-w curve

may be due to ill-conditioning associated with this region of sharp

curvature. It is interesting to observe from Figure 6.46 that the

sharp curvature near 0 = 200 is preceded by a spatial region in
which y - /R so that the total curvature (Ky + I/R) is

approximately zero, or in other words, the inward displacement (0 <
20, see Figure 6.42) is circumferentially flat at collapse except,

of course, in the immediate neightborhood of the load. Figure 6.44

shows that w is flat also axially for x>L/20. Interestingly,

comparison of the load-deformation plots of Figures 6.47 and 6.40 for

K near . = 20' and for w reveals that K starts to grow rapidlyyoy
at a load level (P/4 Q 150,000 pounds) which corresponds to the

beginning of the jog (inflection region) in the P-w0 plot of Figure

6.40.

Scaled Down Model

A scaled down model of the poked cylinder was observed to deform into

a spreading diamond shaped pattern with rounded "corners" at

midlength (see Figure 6.48). The circumferential corners became

increasingly sharper with increasing load until a subtle and

noncatastrophic collapse occurred at one and occasionally both of the

corners. The collapse mechanism appears to be an asymmetric (about

midlength) local snapping, which was sometimes accompanied by a loud

pinq. Such collapse behavior was noticed at most but not all

successively poked points of the model. Regardless of whether

collapse was discernible, stiffening behavior was observed to take

place at all poked points after the circumferential corners became.

sufficiently sharp. It is interesting to mention that these corners

appear to correspond to the above discussed regions of sharp

curvature near 0 = 200 at midlength that are predicted by the

STAGSC-l analysis.
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Mesh Considerations in Retrospect I

As mentioned earlier, the chosen mesh was thought to be satisfactory

for the nonlinear analysis since it provided essentially converged

linear results that are in good agreement with available analytical

solutions, and because the number of nodes spanning the spreading

inward deformation pattern under the load increases with increasing

load. Evidently, this mesh (or any finer mesh) is inadequate to

describe accurately the corner near o = 200 at midlength. However,

it is important to point out that the solution for the radial

displacement w(x,y) may still be accurate, since displacements

converge much more rapidly than higher order derivative variables

(M or y). If this is the case, and since the P-w0 curve of~Y y
Figure 6.40 has a limit point (part c of figure), it follows that the

above value of the collapse load at this point would also be accurate.

D. Consideration of Strategy Parameters

It has already been shown that the DC solution for the venetian blind

drifts away from the more accurate LC solution in a local region of

the P-w curve. Such drift was also observed in two instances in
0

the DC solution for the poked cylinder, as shown by regions I and II

in Figure 6.40. Recall that the continuous curve in the figure p
represents the "best" solution obtained here by refining values of

the strategy parameters governing the convergence criterion (DELX)

and the frequency of refactoring (NEWT) so as to eliminate drift.

Specifically, drift in region I was eliminated by tightening DELX to
-43

10 from its default value of l0- , and drift in region II was
smoothed out by forcing refactoring at every step. It is interesting

to note that the drift in region II (see Fig. 6.40b) might be

interpreted as siqnifying collapse, which would be spurious.

In view of the improvement brought about by the NEWT=-l solution in

region I, an additional run was made to determine if the drift in

region I could similarly be avoided by refactoring at every step,

instead of by tightening the condition for convergence. That this

happens is evident from inspection of Figure 6.49 for the following
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three solutions, which are shown are shown to an expanded scale: (1)

default (DELX = lO-3 , NEWT # -1), (2) tighter convergence

(lO-4, 1 -1) and (3) successive refactoring (lO- 3, -1). It is

significant to observe that the solution based on the more stringent

Iconvergence criterion costs 2.25 times as much as does the one which
forces refactoring at every step, since it requires more steps (see

Table 6.21). Furthermore, it actually requires one more

refactoring,* as is also shown in Table 6.21. Indeed, the solution

based on successive refactoring turns out to be 26% cheaper than the

default solution, since it required roughly half as many steps.

Similarly, comparison of run times for both DELX=l0 -4 solutions for

region II of Figure 6.40 shows that the solution with successive

refactoring is 23% cheaper. It appears that the savings due to the

bigger load steps allowed by successive refactoring more than offsets

the cost of the additional refactorings for this size problem.

The foregoing results now make it possible to recommend a simple

computational procedure for the economical DC analysis of the

nonlinear softening behavior of shells that can be modelled as small

or modest size problems on STAGSC-l.

E. Recommended Computational Procedure for Displacement-Controlled

Analyses

Step 1: Start the analysis with the default value of DELX=IO "3 for

the convergence criterion, unless there is a special reason

to proceed otherwise, and let the program decide when

refactoring should take place (NEWT>O).

*The refactoring that always occurs during the first step of a restart run is

excluded from this relative comparison.
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Step 2: Require refactoring at every displacement step (NEWT=-l)

when convergence difficulties or inaccurate solutions are

first encountered. Set NEWT=-l for the rest of the

analysis until stiffening behavior occurs in the

post-collapse portion of the load-displacement curve.

Step 3: Reduce DELX each time subsequent computational problems

arise.

Note that this computational procedure may not be economical for

problems with larqe bandwidths because of the cost of refactoring.

The present results indicate that it is economical for the largest

problem considered here, which has 512 mesh points and an average

semi-bandwidth of 128. Also note that the procedure does not apply

to a load-controlled analysis since such an analysis generally

requires smaller steps for satisfaction of convergence than does a

displacement-controlled analysis. This is illustrated by the

venetian blind results (Figure 6.34).

6.4.4 CONCLUDING REMARKS AND RECOMMENDATIONS

The quadrilateral flat plate element 411 with 2x2 integration points was used

in analyses of the geometrically nonlinear behavior and collapse of a point

loaded venetian blind and of pinched and poked cylinders. Displacement-

controlled analyses were performed for all three shells along with a

load-controlled analysis of the venetian blind. Conclusions and

recommendations stemming from these analyses are as follows:

A. The load displacement curves up to the limit point were obtained in a

straightforward way for the three problems. Changes in user strategy

during the course of the analysis were required only for the poked

cylinder due to convergence difficulties or indications that

inaccurate solutions had been accepted. In this respect it is worth

noting that the user has some control over the sophisticated but

flexible strategy in STAGSC-I,and this allows for a more efficient

use of the program.
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3 B. The STAGSC-l results agree well with linear series solutions and with

a limited number of finite difference nonlinear solutions.

C. A displacement-controlled (DC) analysis is considerably cheaper than

a load-controlled (LC) analysis of the same problem, but may require

more decisions pertaining to the selection of the strategy parameters

governing the convergence criterion (DELX) and the frequency of

refactoring (NEWT). Specifically, the DC analysis of the venetian

blind was 6 times cheaper than the LC analysis and required 8 times

fewer steps to reach the same limit point.

D. Because satisfaction of the same convergence criterion is so much

easier, it appears that too large a step is sometimes accepted in a

DC analysis. This may cause the load-displacement curve to drift

away from the "true" solution appropriate to the given mesh. For the

venetian blind, the DC curve drifted slightly away from the more

accurate LC curve in a local region and then properly returned to it

when the program decided to refactor at a later step. Drift in the

poked cylinder results required a restart from a previous accurate

solution with different values selected for the strategy parameters.

Thus, drift is either inconsequential or easily corrected, and is a

small price to pay for the relatively greater economy of a DC

analysis.

E. For modest size problems, drift can be eliminated at a lower cost by

refactoring at each displacement step instead of sharpening the

convergence criterion.

F. Based on these results, a simple computational procedure is

recommended for the DC analysis of the nonlinear softening behavior

of shells that are run as small or modest size problems on STAGSC-l.

G. A DC load-displacement curve is smoother if solutions only at

refactored steps are plotted.
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H. STAGSC-l has the advantage of automatically reducing the load or

displacement step when convergence difficulties are encountered, such

as when the limit point is approached. Thus, in a LC analysis it is

easier for STAGSC-l to home-in on the collapse load to any degree of

accuracy than it is for some other programs in which input values of

the load step camnot he reduced internally.

I. Since knowledge of the post-collapse behavior is important,

consideration should be given to the implementation of special

techniques [50] that allow a limit point to be passed in a LC

analysis.

J. The scope of the post-processor (STAPL) should be expanded to include

variable-variable plots or "history" plots to give plots of load vs.

displacement, for example, and to include "snapshots" of the spatial

variation of the response variable along a selected grid line at a

specified load level (or time point).

K. Finally, it seems appropriate to close by remarking that experience

gained here engenders a sense of confidence in the reliability of the

elastic nonlinear capability of STAGSC-l.

6.5 PROGRAM EFFICIENCY

The evaluation of the computational efficiency of STAGSC-l has been based on

execution statistics compiled during the course of this study. It is

necessarily subjective because all the work has been performed on the

Westinghouse Power Systems Computer Centre CDC 7600 installation. This system

has a relativey small central core memory (SCM) (1510008, 60 bit words)

which is augmented by 6000008 words of large core memory (LCM) and 6510

million words of high speed disk storage. The STAGSC-l version implemented on

this system is not configured to use LCM and any data which is not required in

core is buffered to and from disk.

The measure of cost on the CDC 7600 is the computer resource unit (CRU) which

is determined by means of an algorithm combining the usage of small and large

0920B-86B:2
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core memory, mass storage, input/output transfers, number of disk accesses and

central processor time. The dayfile output gives a breakdown of the total CRU

usage into its individual components thus giving insight into relative costs

of computation and data handling. It must of course, be emphasized that this

is subjective because of the weighting assigned by the charging algorithm to

these various components. Nevertheless, such statistics do shed light on the

3 performance of STAGSC-l because it becomes apparent where improvements could

be made. The most valuable data are direct comparisons between solutions

obtained by STAGSC-l and other programs to the same problem. However, such an

in-depth investigation would have exceeded the resources available for this

project and therefore only one such comparison was made.

The data presented cover linear and nonlinear static analyses, small and

larger size problems, linear and nonlinear dynamic transient and nonlinear

collapse analyses. Table 6.22 provides details of the execution statistics

for fifteen separate analyses, including one problem using the MARC program.

The central processor time (CPU) and the total resources used (CRU) are given

for both the pre-processor (STAGS1, MARCPRE) and the execution phases (STAGS2,

MARCSTR). For all but the smallest of problems, the resources used by STAGS1

are a very small proportion of the total and will not be discussed further.

The final column of Table 6.22 is an index which is the ratio of CRUs to CP

hours and is a measure of the execution efficiency (or, more realistically,

inefficiency) of the program. Qualitatively, it is the ratio of the total

resources used to the resources used solely in computation. The average value

is 14.9 with a maximum spread of -5.5 to +6.0. This compares well with the

value of 14.5 obtained for the MARC problem. Table 6.24 presents a comparison

between several structural analysis programs in use on the Westinghouse

system. This shows that STAGS uses the most total resources per central

processor hour.*

Returning to the data in Table 6.22, the one point of direct comparison

between STAGSC-l and MARC shows that although, on a relative basis, MARC

*An interesting feature is that the performance of two different versions of

ANSYS is apparently very different and is a consequence of the later version
(Revision 3) being tailored to run efficiently in the interactive mode.
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performed more efficiently than STAGSC-l, MARC used 2.8 times the resources to

solve the same problem. Ultimately, it is on such a basis that a program must

finally be judged (other things, such as accuracy, being equal). Table 6.23

gives details of the way in which the computer resources were used in a number

of STAGSC-l runs. In all but two cases, the number of disk accesses was the

largest contributor to resource usage. Although this is a direct function of

the particular charging algorithm employed, it is nevertheless indicative of a

potential area for program improvement. On the CDC 7600, this would be

reduced by the use of large core memory (LCM).

To sum up, it appears that STAGSC-l uses a significantly larger amount of

total resources for a given computational effort than other structural

analysis programs on the Westinghouse system. Much of this resource usage is

due to accessing disk storage. On the other hand, an absolute comparison

between STAGSC-l and MARC suggests that STAGSC-l is much more efficient in its

total resource usage for a given problem. This indication is supported by

user experience in a qualitative, but undocumented sense.
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TABLE 6.1

LINEAR CONVERGENCE OF ELEMENTS 410 and 420 FOR THEK' CLAMPED, PRESSURE LOADED SQUARE PLATE

QUAF 410 QUARC 420
No. of

Elements WA (in) % Error WA (in) % Error

4 .25103 -8.78 .24292 -11.73

I 9 .26461 -3.85 .27104 -1.51

16 .26969 -2.00 .27487 -0.12

25 .27208 -1.13 .27579 +0.21

TABLE 6.2

NONLINEAR CONVERGENCE OF ELEMENTS 410, 411, 420, 422 FOR THE

CLAMPED, PRESSURE LOADED SQUARE PLATE

% Error
No. of
Elements QUAF 410 QUAF 411 QUARC 420 QUARC 422

4 -13.6 -5.51 -12.60 -6.75

9 -7.16 -4.63 -4.88 -2.46

16 -4.75 -3.38 -3.32 -1.67

25 -3.52 -2.69 -2.54 -1.45

64 -2.19 -- -- --

11
I
I
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TABLE 6.3 3
NONLINEAR FLAT PLATE ANALYSIS: EXECUTION STATISIICS

Element No. of No. of Total CPU secs
Run Type Elements Steps CPU secs /step Comments I
10 QUAF 4 19 1.977 0.1041 Step halved once.

410

11 QUAF 9 19 3.500 0.1842 Step halved once.
410 1 Refactoring.

9 QUAF 16 19 6.275 0.3303 Step halved once.
410 1 Refactoring.

12 QUAF 25 11 6.106 0.5551 1 Refdctoring.
410

13 QUAF 4 11 2.018 0.1835 1 Refactoring.
411

14 QUAF 9 11 4.308 0.3916 1 Refactoring.
411

15 QUAF 16 11 6.974 0.6340 1 Refactoring.
411

16 QUAF 25 11 10.171 0.9246 1 Refactoring.
411

17 QUARC 4 18 3.749 0.2083 Step halved once.
420

18 QUARC 9 19 11.389 0.5994 Step halved once.
420

19 QUARC 16 19 17.885 0.9413 Step halved once.
420

20 QUARC 25 11 19.375 1.7614 1 Refactoriny.
420

21 QUARC 4 19 5.056 0.2661 Step halved once.
422 1 Refactoring.

22 QUARC 9 11 8.055 0.7323 1 Refactoring.
422

23 QUARC 16 11 14.142 1.2856 1 Refactoring.
422
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I TABLE 6.3 (Continued)

Element No. of No. of Total CPU secs
Run Type Elements Steps CPU secs /step Comments

24 QUARC 25 11 21.934 1.9940 1 Refactoring.
422

25 QUAF 64 11 13.456 1.k232 1 Refactoring.
410

SI

II

I
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TABLE 6.4
QUAF 410--STIFFNESS EIGENMODES

Mode Eigenvalue Type Description

1 0.0 Rigid Body

2 0.0 Rigid Body All of the "rigid body" modes are linear
combinations of the three translational and

3 0.0 Rigid Body the three rotational modes. However, the
rotations about the normal (Rw) are not

4 0.0 Rigid Body consistent in the rigid body sense with the
other five d.o.f. There appears to be some

5 0.0 Rigid Body kinematic freedom in the shape functions
which gives rise to the extra rigid body

6 0.0 Rigid Body freedom.

7 0.0 Rigid Body

8 1598 Membrane Antisymmetric biaxial stretching with
quadratic variation normal to each side.

9 1709 Twist Pure linear twisting.

10 1923 Bending Anticlastic bending.

11 2111 Bending Antisymmetric bending with quadratic and
cubic variation of normal displacement.

12 2111 Bending Same as Mode 11 with sides interchanged.

13 3571 Bending Doubly symmetric spherical bending.

14 41296 Bending + Cubic displacement along each edge. Diagonal
Twist bending at two corners, diagonal twist at

the other two.

15 41296 Bending + Same as Mode 14 with corners interchanged.
Twist

16 42260 Membrane Quadratic displacements along two opposite
sides and cubic along the other two.

17 42260 Membrane Same as Mode 16 with sides interchanged.

18 2338060 Membrane "Shearing" mode with cubic displacements
along all four sides.

19 2370460 Membrane Biaxial extension/compression with cubic
displacement along each side.

0920B-86B:2
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I

TABLE 6.4 (Continuea)

Mode Eigen Value Type Description

20 2370460 Membrane Same as Mode 19 with extension/compression
sides interchanged.

I 21 2435990 Membrane Similar to Mode 8, but with the emphasis on
the corner displacements (as opposed to
normal rotations).

22 4285710 Membrane Pure biaxial compression (no corner
rotations).

23 6870160 Bending + Diagonal twist at each corner. Cubic normal
Twist displacements along each side. Straight

diagonals.

24 61861600 bending + Similar to Mode 23, but with anticlastic
Twist bending of the diagonals.

123
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TABLE 6.6

I FLEXURAL FREQUENCIES IN XZ-PLANE

Frequency (Hz)

Mode %
No. STAGSC-1 Exact Difference Comments

11 88.3277 88.8164 -0.6

2 544.409 556.603 -2.2 Motion in the XL-plane only.
All axial and torsional

3 1496.60 1558.20 -4.0 freedoms suppressed.

4 2869.83 3054.05 -6.1 20 active degrees of freedom.

5 4631.57 5048.56 -8.3

6 6739.66 7541.67 -10.6

7 9140.57 10533.4 -13.2

8 11746.7 14023.8 -16.2

9 14379.4 18012.7 -20.2

10 16594.3 22500.4 -26.2
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TABLE 6.7

CLOSELY SPACED AND EQUAL MODES

Frequency (Hz)
Mode % Dispt. Ratio
No. STAGSC-I Exact Difference (XZ/XY) Comments

1 80.3059 80.7422 -.54 1
10

2 81.1081 81.5496 -.54 107  1% difference in
cross-section

3 495.253 506.003 -2.13 1 dimensions.
-O7
10

4 500.173 511.063 -2.13 107

1
5 1362.69 1416.54 -3.8 7

6 1376.09 1430.71 -3.8 1O7

1 80.3058 80.7422 -.54 6.66

2 80.3058 80.7422 -.54
6.66

3 495.253 506.003 -2.13 1.148 Equal dimensions.
1

4 495.253 506.003 -2.13 1.148

5 1362.66 1416.54 -3.8 11 .041 :

6 1362.66 1416.54 -3.8 1.041
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I TABLE 6.8

FLAT PLATE CANTILEVER FREQUENCIESI
Frequency (Hz) % Error

Mode Mode
No. Type Exact STAGSC-1 MARC Zienk. STAGSC-1 MARC Zienk.

1 First Bending 846 750 845 826 -11.3 -0.12 -2.4

2 First Twist 3638 2172 3651 3728 -40.3 0.36 2.5

i 3 Second Bending 5266 3784 5280 5157 -28.1 0.27 -2.1

4 Second Twist 11870 6335 12100 12055 -46.6 1.9 1.6

TABLE 6.9

1/4 WAVE MODEL FREQUENCIES

Fundamental
Mesh Frequency (Hz) % Error

4 x 4 81.58 -2.73

5 x 5 82.45 -1.69

I

m 127
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TABLE 6.10 I

1/8 CYLINDER MODEL FREQUENCIES I
Frequency Element

Elements Mode n Hz % Error Aspect Ratio Comments

8 Circ. 1 8 75.79 -9.6 2.55 3 modes only
2 Axial 4 10 88.37 -13.6 requested

5 6 99.77 -4.6

16 Circ. 1 8 74.81 -10.8 5.09 Circumferential
2 Axial 4 10 84.83 -17.1 refinement

5 6 99.80 -4.6
7 12 108.15 -22.3

16 Circ. 1 8 82.17 -2.0 2.55 Axial refinement
4 Axial 4 10 99.22 -3.0

5 6 103.63 -0.9
7 12 133.89 -3.9

16 Circ. 1 8 84.15 0.33 1.27 Axial refinement
8 Axial 4 10 103.28 0.92

5 6 104.55 -0.01
7 12 141.69 1.74

TABLE 6.11

1/2 CYLINDER MODEL FREQUENCIES

Frequency Hz

STAGSC-1
Mode No. STAGSC-l Exact % Error n Comments

1 82.17 83.87 -2.0 8

2 82.39 -- -- 8 Spurious mode

3 86.35 87.69 -1.5 7

4 86.63 -- -- 7 Spurious mode
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I TABLE 6.12

1/2 CYLINDER MODEL FREQUENCIES

Frequency - Hz
Actual

Mode No. STAGSC-1 Exact % Error n

1 82.17 83.87 -2.03 8

2 86.35 87.69 -1.53 7

3 87.75 89.92 -2.41 9

4 99.34 102.3 -2.89 10

5 103.63 104.6 -0.93 6

TABLE 6.13

CRITICAL TIME STEP ESTIMATES - EXPLICIT INTEGRATION

Method Critical at (secs) Comments

(i) 4.94 x 10-6 Based on highest frequency.

(ii) (a) 2.03 x 10-6 Users' Manual formulae.
(b) 4.08 x 10-6

(iii) 2.36 x 10-6 Speed of sound.

I
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TABLE 6.14

SUMMARY OF RING TRANSIENT ANALYSES

Time Step
Run Type Operator At (sec) Comments

10 Elastic- Park 2 x 10-6 Final time reached = 620 x 10-6 sec.
Plastic Time limit.

II 1 lastic- Park Automatic Initial at = ? x 1()-6 sec. Increased
Plastic to 16 x 10-b sec. SoluLion lbredk, down.

12 Elastic- Park 2 x 10-6 Final time reached = 1002 x 10-6 sec.
Plastic TAPE22 saved for restart.

13 Elastic- Park 2 x 10-6 Attempted restart failed. Message indi-
Plastic cated plasticity data could not be found.

14 Elastic Park 2 x 10-6 Small number of iterations required per
time step (2 or 1).

15 Elastic Park 20 x 10-6 At reduced to 10 x 10-6 sec. at
Step 2. Small time limit (8 secs).

16 Elastic Park TO x 10-6 2000 x 10-6 secs. reached. Increased
at caused periodic refactoring.

17 Elastic Trapezoidal 10 x 10-6 Periodic refactoring.

18 Hiastic Trapezoidal 2 x 10-6 No refactoring. Average of 2 iterations
per time step.

19 Elastic Gear 2nd 10 x 10-6 Periodic refactoring.
Order

20 Elastic Gear 2nd 2 x 10-6 No refactoring. 1 or 2 iterations per
Order time step.

21 Elastic Gear 3rd 2 x 10-6 A lot of refactoring after 240 x 10-6
Order sec. Determinant changed sign at 336 x

10-6 sec.

22 Elastic Explicit 1 x 10-6 Divergence occured after 14 steps.

23 Elastic Explicit I x 10-7  Time limit after 265 steps.

24 Elastic Explicit 5 x 10- 7  Divergence occured after 17 steps.

? I lastiLc Lxplicit I x l0-I Solution obtained out to 1/10 steps.
Time limit.

130
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1 TABLE 6.15

NONLINEAR TRANSIENT EXECUTION STATISTICSI
No. of CPU CPU secs/

Run Type Operator Steps secs. Step CRU CRU/Step Comments

12 Elastic- Park 501 200.45 0.400 0.798 .00159 Approx. 1 iteration/
Plastic step. Also plastic

sub-iterations.

14 Elastic Park 1000 139.61 0.140 0.587 .00059 2 iterations/step.
No refactoring.

16 Elastic Park 200 45.88 0.229 0.169 .00085 2 to 7 iterations/
step. Periodic
refactoring.

17 Elastic Trapezoidal 200 63.28 0.316 0.215 .00108 2 to 6 iterations/

step. Frequent
refactoring.

18 Elastic Trapezoidal 1000 141.53 0.142 0.593 .00059 2 iterations/step.
No refactoring.

19 Elastic Gear 2nd 200 38.84 0.194 0.148 .00074 2 to 7 iterations/
Order step. Periodic

refactoring.

20 Elastic Gear 2nd 1000 119.04 0.119 0.511 .00051 1 or 2 iterations/
Order step. No refactoring.

21 Elastic Gear 3rd 167 44.85 0.269 0.156 .00093 2 to 20 iterations/
Order step. Much

refactoring.

25 Elastic Explicit 1710 316.54 0.185 1.271 .00074 No iterations or
refactoring necessary.

ii
I
I

f, I
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Iable 6.16 I)imensions, Material Properties and ('ollapsw Loads

VENETIAN BLIND PINCHED POKEDVENETIANBLIND CYLINDER CYLINDER
P, wO

GEOMETRY

R = mid. surface radius (in.) 2.5 .5 1117
L length (in.) 6 1.0 996
t = thickness (in.) .01 .005 1.75
0o - opening angle 450 -
R/t 250 100 638
L/R 2.4 2 .892

MATERIAL PROPERTIES

E = Young's modulus (psi) 107 107 2.79 x 107

P = Poisson's ratio .3 .3 .3

BOUNDARY CONDITIONS

curved edges SS SS SS
straight sides F - -

COLLAPSE LOAD PC (Ib)

STAGSC-1
DC = disp-cont. 2.35 12.14 773,200
LC = load-cont. 2.35 -

STAGSA (Brogan & Almroth) 2.48
%diff. 5.2 -

SS = simply support (classical)
F = free
% diff. is relative to STAGSA collapse load

5407-78
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TABLE 6.17

PARTICULARS OF FINITE ELEVENT

Average Semi Number Number of
Problem Mesh DOF -Bandwidth of Runs Steps to: CPS

Type m r PC Pond P c Pe

Venetian Blind unif. 10 8 6C3 64 DC: 1 19 30 37 6
LC: 2 157 157 19F 1

Pinched Cylinder var. 12 8 693 61 5 45 59 248 2

Poked Cylinder var. 16 32 4185 128 11 102 102 3717 71

m,n = Number of mesh points in axial & circumferential directions, respectively

DOF = Number of active degrees of freedom

Pc = Collapse load at limit point of P-wo curve

Pend = Denotes end of analysis
CPS = Computer processing seconds on the Westinghouse CDC-7600 computer

CRU = Computer Resource Units

$ Cost is based on in-house rate of $90/CRU

DELX Error tolerance for convergence. Default value is 10
-3

(Note that the default value of the relaxation factor WUND was used in all anal

133
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XPENT ANALYSES

kefactcr at
CPS CRU $ DELX Ever vSte p ?

p e l p c p ed p c p rPend Pc Pend Pc Pend

7 65 .170 .297 15 27 10-3  No
q 19 1.,21 1.021 2 92 1C- 3  .c

2 289 .940 1.098 F5 99 10- 3  No

17 3717 21.367 21.367 1923 1923 10 -3,10-410 - 5 Yes for P.P

~y

a analyses)
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TABLE 6.18

COMPARISON OF LINEAR SOLUTIONS FOR VENETIAN BLIND

AND PINCHED CYLINDER PROBLEMS

5 Problem Mesh w Et/P

(mxn) STAGSC-l Prey. Sol. % Diffi.

Venetian Blind 1Ox8 1091 1 156 (b) -5.6

Pinched Cylinder 12x8 148 -9.8

164(c)

23x15 160 -2.4

I (a) % difference is relative to the previous solution
(h) Broqan & Almroth, 1971
(c) Lindberg, et al., 1969

II
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TABLE 6.19

VARIABLE MESHES USED IN PINCHED AND POKED CYLINDER ANALYSES

Size of Intervals in Axial & Hoop Directions

Pinched Cylinder Poked Cylinder

Row (or Col.)
Numbers Axial(in.) Hoop(deg) Axial(in.) Hoop(deg)

1-2 .0124 3.481 7 1
2-3 .0170 5.469 8.4 1.1
3-4 .0232 6.96 10.08 1.21
4-5 .0341 10.94 12.096 1.331
5-6 .0449 19.89 14.5152 1.4641
6-7 .0495 21.38 17.4182 1.6105
7-8 .0557 21.88 20.9019 1.7716
8-9 .0651 25.0823 1.9487
9-10 .0650 30.0987 2.1436

10-11 .0665 36.1185 2.3579
11-12 .0666 43.3422 2.5937
12-13 52.0106 2.8531
13-14 62.4127 3.1384
14-15 74.8952 3.4523
15-16 83.6286 3.7975
16-17 4.1172
17-18 4.5950
I1-19 5.0545
19-0 5.5599
20-21 6.1159
21-22 6.7275
22-23 7.4002
23-24 8.1403
24-25 8.9543
25-26 9.8497
26-27 10.8347
27-28 11.9182
28-29 13.1100
29-30 14.4210
30-31 15.8631
31-32 15.5060

Load is applied at Row 1 and Column 1.
The size of consecutive axial and hoop intervals for the poked cylinder
increase geometrically by 20% and 10%, respectively, except for the last
interval.
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Table 6.20 Comparison Of Linear Results For The Poked Cylinder

ILocation Variable STAGSC-I Kempeer et W. % Duff.(I)

P L
20

1at load, x=y4O wo Et/P 1092 1045 4.5

xL4 wEt/P 368 366 .4
V=O M V/P .01542 .01492 3.3

M5IP .00405 .00335 2.7
NXR/P -15.04 -13.72 9.6

X-0 wEt/P 346 325 6.5
Y=L/4 NX R/P 27.50 24.75 11.1

Averae 5.4%

(a) % Difference is Relative to Previous Solution

1 5407-100
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i TABLE 6.21

I COMPARISON OF THREE SOLUTIONS FOR REGION I

Base Run "Tighten "Refactored"
(Default) Cony." Run Run

DELX 10-3  1O-4  10-3

J Refactor at No No Yes
Every Step?

CRU = 2.582 4.298 1.908

pPPP i. (lb) P(lb) (P b

18.5 69880+  69886+

19 71592+  71523
19.5 73453 73319*
20 75364

F20.5 76888 76626*
21 78449 78360*
21.5 79771
22 82842* 81538*
22.5 83104 82933*
23 86392 84742
23.5 86421* 86113*
24 88421 87593
24.5 90249 89106 88592*
25 90539* 90460+
25.5 92010 91847*
26 92873 93289*
26.5 -4727 +  94826 93625*
27 96537*
27.5 97309 97359
28 98530
28.5 102340 99774* 98397*
29 101470
29.5 99486 IO2BQQ
30 103870+

30.5 105140* 103020*

*Automatic refactorinq during first step of restart run

*Refactoring

137
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TABLE 6.23

STAGSC-l EXECUTION STATISTICS - 2

Percent of lotal CRUs

1/0 Disk D isk
Run Description SCM I/O Buffers Storage Accesses CP

CYLROOF Gravity loaded cylindrical 13.0 17.4 4.4 0 52.2 13.0
05 roof. Linear static.

PLATETRAN Linear transient analysis 13.2 2.6 2.6 0 73.7 7.9
06 of flatplate. Trapezoidal

integration

MARC DEMO Same as above using MARC 16.1 4.6 1.1 0 67.8 10.3
PROB4O1A and modal superposition.

RINGSTAT Elastic-plastic, static, 21.0 22.6 4.8 0 37.1 14.5
05 large disp. Center

loaded ring.

RINGTRAN Elastic, large disp. 15.9 22.5 3.3 0.5 47.3 10.4
16 Ring with initial

velocity. Park method.

RINGTRAN Same as above using 15.1 3.1 2.1 1.3 68.4 9.9
25 explicit method.

WMSLOJA Pinch-loaded cylinder. 16.0 35.8 2.8 0.6 34.3 10.5

Nonlinear collapse.

WMSLO7Y Point-loaded cylinder 13.0 42.9 2.1 1.5 33.8 6.6

Nonlinear collapse.
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I TABLE 6.24
j COMPARATIVE PROGRAM STATISTICS

CRU_IProgram CP hr.

STAGS 16.6

MARC 11.5

WECAN 9.1

ANSYS 5.8

Rev. 2

ANSYS 12.0
Rev. 3

PLACRE 10.6
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Figure 6.4 Flat Plate Problem
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Figure 6.5 Flat Plate with Clamped Edges (Ref: Roark p. 408)
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Figure 6. 10 Single Element Load Cases
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Figure 6.11 Nodal Forces for Single Element Load Cases
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7.0 CONCLUSIONS AND RECOMMENDATIUNS

In the Introduction, it was pointed out that the criteria for evaluating a

structural analysis computer program should reflect both the nature of the

program and the class of users most likely to require the program. Since

STAGSC-l is a nonlinear shell analysis program its nature is quite specialized

jand, by the same token, the majority of users will be relatively

sophisticated. This places considerable weight on the technical excellence of

the program, its flexibility in use and for post-processing and finally, on

its documentation.

In order to obtain a systematic evaluation of the different aspects studied, a

rating will be assigned to each aspect based on a scale of 0 to 4. Table 7.1

shows the interpretation of the rating method.

For the purposes of rating, five major aspects have been identified and given

a relative weight as follows:

o Program documentation 20%

o Analysis capability 20%

o Input and output 20%

o Program performance 25%

o User support 15%

These will each be discussed separately in the next sub-section, but at this

point the overall conclusions can be stated; STAGSC-l rates as about mid-way

between "acceptable and "good" (i.e., an arithmetic result of 2.39).

This may seem to be a somewhat conservative evaluation considering the many

unique capabilities of the program. In the opinion of the authors of this

report, however, the lack of documentation of the program itself and the

shortcomings in the area of post-processing justify this conclusion. If these

two aspects were each upgraded to "excellent", then on the present system of

rdting the overall evaluation would than place STAUSC-1 in the

"good-to-excellent" range.
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7.1 PROGRAM DOCUMENTATION

rhe three types of documentatiun evdludted were the users' Indnual, ttleoreLicdl

manual and programmers' manual.

A. Users' Manual (Rating 3.5)

Highly rated because of logical organization and excellent user

guidance. Negative features are lack of any index or

cross-referencing and insufficiently clear indication of currently

inoperational features.

B. Theoretical Manual (Rating 1.5)

The low rating is due to incompleteness and substantial obsolescence.

C. Programmers' Manual (Rating 0)

The programmers' manual does not exist. Equal weighting is given to

each of these so that the overall rating for documentation is only

1.67, i.e., between "maryinal" and "acceptable".

7.2 ANALYSIS CAPABILITY

Eleven areas were selected for the purposes of rating. Each will be briefly

discussed and rated.

A. Static Linear (Rating 3.5)

STAGSC-1 is not specifically intended for linear analysis but such

problems are nevertheless handled very well by the program.

196
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B. Static Nonlinear (Rating 4.0)

I The highest rating must be given to this capability by virtue of its

speed and the way in which solution strategy is handled

semi-automatically by the program while leaving the user significant

control.

C. Vibration Modes (Rating 3.5)

This feature is also highly rated because of the use of a very

effective eigenvalue solver, i.e., subspace iteration. This

capability is current "state-of-the-art."

D. Bifurcation Buckling (Rating 3.5)

The same comments apply as in the case of vibration analysis.

E. Plasticity (Rating 2.0)

The plasticity capability is judged as "acceptable" for the reason

that although a relatively modern hardeninq model (White-Besseling)

is implemented, current practice requires that a variety of hardening

models be available. Therefore, as a minimum, isotropic hardening

should also be implemented (kinematic hardening is available as a

degenerate form of White-Besseling).

F. Nonlinear Collapse (Rating 3.8)

This capability only falls short of the "excellent" category because

such analysis will often require the use of plasticity with the

i consequent limitations as described above.

,I
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G. Transient Response (Rating 3.8)

The time integration procedures available in STAGSC-l provide

standard explicit (central difference) and implicit (trapezoidal)

methods plus three other implicit schemes (Park and Gear's 2nd and

3rd order). There is therefore considerable scope for the analyst to

select a procedure best suited to the problem in hand.

H. User Subroutines (Rating 4.0)

The wide variety of user-coded functions which can be specially

provided for any given function is well suited to the sophisticated

user. The range of capabilities available in this form is believed

to be exceeded only by the MARC Program [26].

I. Element Library (Rating 1.5)

The heart of any finite element program is the library of elements.

In the case of STAGSC-l, the library consists mostly of flat plate

elements with membrane and bending capability. There are, however,

no genuine shell elements with curvature and this must be considered

a significant disadvantage in a shell analysis program.

J. Elastic Material Properties (Rating 3.0)

Both isotropic and orthotropic material behavior are provided for

together with the ability to orient material axes in any given

direction. Multilayer composite materials may be represented by

specifying properties for each layer independently.

K. Temperature Effects (Rating 1.0)

Temperatures may be specified as a function of surface coordinates

but not in the thickness direction (except for discrete stiffners).

Moreover, material properties cannot be expressed directly as a

function of temperature.
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The overall rating for analysis capability is 2.89 (i.e., "good") with the

I element library carrying a weighting of 3 and all other components weighted as

I or less.

I 7.3 INPUT AND OUTPUT

A. General Input (Rating 3.5)

The free format style of input and the ability to intersperse comment
statements make for ease of input and subsequent ease of reading.

The volume of input required is not excessive, even fur larger

problems.

B. Shell Unit Input (Rating 3.5)

The ability to generate both regular and irregular meshes )n standard

shell surface geometries is an excellent feature. Shell connections

are also easily specified if the shell units are joined at compatible

boundaries (e.g., a cylinder to a torus at a cross-sectional

boundary). More general intersections are not determined uy tne

program (e.g., a cylinder/sphere intersection) and the intersecting

boundaries must be calculated ana input by the user. This also

denies the use of the shell unit library and the intersecting shells

must be defined by user subroutine or by a spline fit to specified

points.

C. Element Unit Input (Rating 1.5)

Input for the element unit places a much greater burden on the user

1 and the generation of a finite element mesh requires the use of user

subroutines; otherwise, input must be provided node by node and

element by element. However, the use of the element unit is normally

expected to be confined to local regions of the shell where the

geometry and/or the mesh may be very irregular.
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D. User Subroutines (Rating 4.0)

As has been indicated, most of the input data may be specified by

user subroutines and in many instances they provide the only means

(e.g., shell geometries not included in the library or shell surface

imperfections). The capability must be rated as excellent on account

of the range of functions available.

E. G jeral Output (kating 2.0)

There is an acceptable degree of selective control over solution

output, at least in terms of the frequency of the output. According

to the manual, complete sets of displacements or stresses, stress

resultants etc. can be printed at different intervals; this feature

is currently defective in that all the various quantities must be

output at every load or time step. A frequency specification for

selected displacements etc. would be a considerable improvement.

The occurrence of yielding is noted in the stress and strain output

but only the total strains are given. There should also be an option

to obtain the elastic and plastic components of the total strain.

F. Post-Processing (Rating 0.5)

The currently available post-processing using the STAPL program is

inadequate for many analysis tasks. The model and solution data are

saved for restart and this should be made accessible to the user tor

post-processing in any desired manner. A minimum effort in this

direction would be for the developer to provide a complete

description of the model geometry and solution data files.

The overall rating for input and output is 2.50 with equal weighting given to

each topic discussed.
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7.4 PERFURMANCE

The evaulation of performance is based on the specific advanced evaluation

studies described in Section 6. Since this examines only selected aspects of

the performance of STAGSC-l the results cannot be claimed to be comprehensive

but are, at least, a reasonable indication of general performance.I
A. Element Convergence (Rating 1.5)

The element convergence observed in the tests conducted is judged to

be less than acceptable in comparison with "state-of-the-art" curved

shell elements. This is regarded as a serious shortcoming not only

because of the loss in accuracy but also because the full potential

of STAGSC-l as an efficient shell analysis program cannot be properly

exploited. The promised implementation of the Ahmad isoparametric

shell element will, it is hoped, greatly improve this crucial aspect

of performance.

B. Eigenvalue Solutions (Rating 3.5)

The eiyenvalue solver performed well in determining mooes and

frequencies in the often pathological situations of closely spaced or

repeated eigenvalues. It was also seen to be effective in computing

a mode closest to a specified frequency. Situations where the

performance was less effective were seen to be a consequence of an

unsatisfactory mesh or element aspect ratio and hence not

attributable to the eigensolver.

C. Transient Integration (Rating 3.5)

Performance of the transient integration schemes for linear and

highly nonlinear problems was generally good. The trapezoidal scheme

appeared marginally the best based on the least amount of frequency

distortion and damping for the nonlinear transient. The explicit

3 method was unable to complete the nonlinear problem even wiLh an
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order of magnitude smaller time step than the estimated critical

value. From the aspect of economy, the explicit method did not

appear advantageous because the problem size was too small. However,

for highly nonlinear problems, the implicit schemes are of greater

utility since the stiffness matrix can be reformulated.

D. Nonlinear Collapse (Rating 3.5)

The most significant conclusion that may be drawn from the

performance of the elastic nonlinear collapse analyses is that

STAGSC-l has a clearly demonstrated capability to trace out a

load-displacement curve for a shell with somewhat subtle collapse

behavior. In the case of the point loaded cylinder, the predicted

deformation pattern up to collapse appears to be in qualitative

agreement with that observed visually in a small scale model of the

cylinder.

STAGSC-l performed successfully both for controlled load and

controlled displacement incrementation, largely because of the

adaptive incrementation based on the convergence of the solution.

This particular feature distinguishes STAGSC-l from most other finite

element programs with nonlinear capability. Sufficient control was

found to be available to the user both for incrementation strategy

(ICUT and NEWT) and convergence tolerance (DELX). In addition to

effective control of solution accuracy, these strategic parameters

provide the means to obtain the most economical solution.

E. Program Efficiency (Rating 3.0)

The overall efficiency of STAGSC-l cannot be adequately assessed in

relation to other programs based on the present study. However,

given the available evidence it appears that:

(1) STAGSC-1 is a factor of 2 to 3 times more economical in solving

a small linear transient problem than the MARC program.
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(2) there appears to be scope for improvement in data management for

the CDC 7600 system version. Based on the admittedly subjective

and imprecise impressions of other users, SIAG)L-l is a

relatively fast running program in its present form. It seems

safe to conclude, therefore, that improvements in the element

library and in data handling could bring improvements in overall

efficiency which would make it a first choice for shell analysis.

Giving equal weighting to each of the performance aspects of yields an overall

rating of 3.0.

7.5 USER SUPPORT (RATING 1.5)

The topic of developer support for users of STAGSC-l has not been discussed

elsewhere, but being a significant factor in the use of a large scale program

it deserves some consideration. STAGSC-I is a program in the public domain

and the developers, Lockheed Palo Alto Research Laboratory, are not suppliers

of structural software in a general commercial sense. Potential users can

obtain the source file for a nominal fee and are then responsible for

installation on their own systems. For an additional annual fee, updates and

consulting services are available from Lockheed.

Developer expertise is available for solving problems and applying the program

correctly. Program malfunctions can be reported but corrective action must be

taken by the user based on program "fixes" supplied by the developer.

Since funding for STAGSC-I development is principally from NASA, the

individual user has little or no control over future development items. It is

clear that much better user support could be obtained if the fees were

I adequate to support a group whose sole responsibility was consultation and

program maintenance. The present arrangement fails to be satisfactory if a

user requires a minor modification for his particular purpose. Generally

speaking, the complexity of STAGSC-l makes user written modifications to the

program very difficult to achieve and there seem to be no proper channels

through which he can obtain them from the developers.
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As far as program updates are concerned, none have been received since the

evaluation version was delivered in November 1979.

During the present evaluation, the staff at Lockheed were consulted on

numerous occasions and excellent cooperation was obtained.

7.6 RECOMMENDATIONS

A. Documentation

There are four major recommendations;

(1) An up-to-date theoretical manual with adequate coverage of

element formulations should be provided.

(2) A programmer's manual is required which describes the program

flow in sufficient detail to enable the skilled user to identify

the source of any program difficulties and to make changes with

help from the developers.

(3) The users' manual should be provided with a suitable index.

(4) A problem demonstration manual should be written specifically

for STAGSC-l.

B. Capabilities

(1) A good curved shell element (e.g., the Ahmad isoparametric) is

essential for the full potential of STAGSC-l to be realized.

The simpler elements should be retained (QUAF410, 411) but the

value of the higher order (QUARC) series would then be less and

they could probably be discarded.
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(2) The option for additional plastic hardening models should be

provided. As a minimum, isotropic hardening should be

implemented and consideration should be given to simulating

cyclic hardening (or softening), e.g., the so-called ORNL 10th

Cycle Hardening Rule [40].

(3) Inelastic behavior should be extended to include creep. A

simple creep law (e.g., the Norton formula) should be provided

with user input coefficients and the option for time hardening

or strain hardening. In addition, provision should be made for

a user specified creep law to be input. Consideration should

also be given to the eventual inclusion of cyclic creep strain

hardening behavior, e.g., the so-called ORNL auxiliary creep

hardening rules [40].

(4) Temperature distributions should include variations through the

shell wall thickness. In addition, material properties should

be allowed to vary with temperature.

(5) The input for the element unit could be improved. Simple

pattern generation for nodal coordinates and element

connectivity, in addition to the present node-by-node and user

subroutine methods, would make this feature much more usable.

(6) The selectivity of stress and strain printout should be extended

to include the ability to print selected quantities at any

desired load or time step intervals. Also, the option should be

provided to obtain strain components decomposed into elastic,

plastic and thermal contributions.

(7) A user post-processing file should be created which contains all

the necessary model geometry and solution data to permit

solution processing according to the needs of the analyst. The

file should be constructed so that the information retrieval is

I straightforward and it should be fully documented.
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TABLE 7.1

EVALUATION RATINGS

Rating InterpretationI

4 Excellentj

3 Good

2 Acceptabler
1 Marginal

0 Poor
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9.0 APPENDIX

9.1 STAGSC-l SUBROUTINE LINKAGES

3 The overlay structure, as described in Section 3, Program Architecture, makes
frequent reference to the various subroutine calls made in each overlay. The
diagrams showing the subroutine linking within each overlay are contained in

this section. They are not flow diagrams since there is no sequence implied

in the way the diagrams are constructed. Some of the overlays are too large

to fit all the subroutine calls within a single diagram. FQr eample, Overlay

(1,0) requires three diagrams (Figures 9.4, 9.5, and 9,6). Where there are

links between subroutines in different figures, the connection to the calling

subroutine is shown by a dashed line.

There are also two subroutines which make a considerable number of calls and

are themselves basic modules. These are MACUP in STAGS1, and CVR1 and VRDATA

in STAGS2. The details of the calls within these subroutines are given only

once (Figure 9.11 for MACUP and Figure 9.27 for VRDATA).

9.2 ELEMENT STIFFNESS EIGENSOLUTION

The concept of stiffness matrix elgenmodes is discussed by Gallagher [29]. In

order to obtain the distribution of strain energy with respect to the

eigenmodes for a given loading case, it is only necessary to decompose the

solution vector into modal components. The calculation of the strain energy

is then straightforward and can be obtained mode by mode since the modes are

orthogonal. The necessary equations will now be developed.

For an element stiffness matrix [k], the characteristic polynomial may be

obtained by expanding the determinant

.[k] - [I]I - 0 9.1

and the eigenvectors by solution of the equation

m
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[k] {d i } = i {di 9.2

where {di}, Ai are the i th eigenvector and eigenvalue.

Because of the orthogonality of the eigenvectors, we may write

id It [k] {di}= 9.3

provided that

tdilt (di} = 1 9.4

Thus, the eigenvalues are the corresponding generalized stiffness coefficients.

A matrix of the eigenvectors [rd] may be defined as

[rd] = [{d i} . . . . {d1 } .... {d 0] 9.5

where n is the order of [k].

Since the eigenvectors are linearly independent, any solution vector {} may

be expressed as a linear combination of the eigenvectors as follows:

( = [rd] 9.6

where {a} is a vector of modal coefficients.

Thus,

{~1 [r] -l(a) Cr [ dl- 9.7

which, again because of orthogonality, may be written equivalently as
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I = (a) 9.8

I The strain energy associated with the displacement vector {a) is

2 ( A)t [k] (a) 9.9

IBecause of Equation 9.6, this may also be written as
U = (a )t [ r]t [k] [rd] o 9.10

Because of the orthogonality as expressed by Equation 9.3, this may be

rewritten as

U 19.11

n A2i 9.12
2 i=l 1 1

where A is the diagonal matrix of the eigenvalues.

The program ELMOD was therefore written to perform the eigensolution for the

element stiffness matrix and also to determine the corresponding modal

coefficients for a solution vector {a}. The strain energy distribution is

then obtained simply from Equation 9.12. Table 9.1 gives the listing for

ELMOD.

I
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Table 9.1 ELMOD Listing

PROGRAM ELMOD(INPUT,OUTPUT,TAPE5-INPUT,TAPE6=OUTPUT,TAPEO0,TAPE11)
DIMENSION A(1400),AKE(50,50),EIV(50,50),EIG(50),D(50),ALP(50),
iU(50) ,FVl(50) ,FV2(50)
INTEGER EIGEN,ATRANB
EIGEN - 3
ATRANB = 23

C
C READS IN ORDER OF ELEMENT MATRIX (M),FLAG ITAP TO INDICATE WHETHER
C STIFFNESS DATA AND SOLUTION VECTOR ARE TO BE READ FROM TAPE OR
C CARDS.
C
C ITAP = C DATA FROM CARDS
C ITAP = I DATA FROM TAPE
C NSKIP IS THE NO. OF WORDS TO BE SKIPPED AT THE START OF TAPE1OC!

READ(5,1000) M,ITAP,NSKIP,MATZ
N - M*(M+)/2
K1 = N + 1
K2 = N + M

C
C READS IN ELEMENT STIFFNESS MATRIX AS A LOWER TRIANGLE INTO ARRAY A
C READS IN SOLUTION VECTOR AND TACKS IT ON TO THE END OF ARRAY A.
C

IF(ITAP.EQ.1) GO TO 50
READ(5,i010) (A(I), I=I,N)
READ(5,i010) (A(I), I=Kl,K2)
GO TO 60

50 READ(IO) (SKIP,I-1,NSKIP), (A(I),I=I,K2)
60 CONTINUE

C
C CREATES SEPARATE ARRAYS AKE AND D FOR THE ELEMENT STIFFNESS MATRIX
C AND SOLUTION VECTOR.
C

DO 100 1-1,M
DO 100 J1,T
K - J + I*(I-1)/2
AKE(I,J) = A(K)
AKE(J,I) = AKE(I,J)

100 CONTINUE
DO 110 1-1,M
J - M*(M+I)/2 + I
D(1) = A(J)

110 CONTINUE
C
C FINDS THE EIGENVALUES AND EIGENVECTORS OF STIFFNESS MATRIX AKE.

C
CALL RS(50,M,AKE,EIG,MATZ,EIV,FV1,FV2,IERR)

C FINDS SCALAR PRODUCT OF EACH EIGENVECTOR WITH ITSELF TO FIND THE
C NORMALIZATION FACTORS AND PLACES THEM IN ARRAY A.

f C

214

.4



I

I Table 9.1 ELMOD Listing (Continued)

DO 130 J-1,M
FACT - 0.0
DO 140 I-1,M
FACT - FACT + EIV(IJ)*EIV(I,J)

140 CONTINUE
A(J) - SQRT(FACT)

130 CONTINUEI C
C SCALES EIGENVECTOR MATRIX EIV TO MAKE IT ORTHONORMAL.
C

DO 150 J=1,M
DO 150 I-1,M
EIV(I,J) - EIV(IJ)*A(J)

150 CONTINUEI C
C THE VECTOR OF MODAL COEFFICIENTS IS NOW FORMED AND PLACED IN ALP.
C

CALL MATRIX(ATRANB,M,1,EIV,50,D,50,ALP,50)

C DETERMINES THE VECTOR OF MODAL STRAIN ENERGIES.

CIUE = 0.
DO 160 I1,M
U(I) = 0.5*ALP(I)*ALP(I)*EIG(I)
UE - UE + U(I)

160 CONTINUE
C
C PRINTS OUT THE RESULTS.

C
DO 170 J=,M
WRITE(6,1020) J

* WRITE(6,1030) (EIV(IJ),I1-l,M)
WRITE(6,1040) EIG(J)
WRITE(6,1050) U(J)

170 CONTINUE
WRITE(6, 1060) UE
STOP

C
1000 FORMAT(413)
1010 FORMAT(6E12.6)
1020 FORMAT(IH1,f//,1OX,I1HEIGENVECTORlX,I3,/)
1030 FORMAT(lOX,E12.6)
1040 FORMAT(//,1OX,31HTHE CORRESPONDING EIGENVALUE ISIX,E12.6)
1050 FORMAT(//,10X,26HTHE MODAL STRAIN ENERGY IS,1X,E12.6)
1060 FORMAT(//,10X,26HTHE TOTAL STRAIN ENERGY IS,X,E12.6)

END
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